Enter a problem...
Algebra Examples
Step 1
Step 1.1
Complete the square for .
Step 1.1.1
Simplify the expression.
Step 1.1.1.1
Apply the distributive property.
Step 1.1.1.2
Multiply by .
Step 1.1.1.3
Expand using the FOIL Method.
Step 1.1.1.3.1
Apply the distributive property.
Step 1.1.1.3.2
Apply the distributive property.
Step 1.1.1.3.3
Apply the distributive property.
Step 1.1.1.4
Simplify and combine like terms.
Step 1.1.1.4.1
Simplify each term.
Step 1.1.1.4.1.1
Multiply by by adding the exponents.
Step 1.1.1.4.1.1.1
Move .
Step 1.1.1.4.1.1.2
Multiply by .
Step 1.1.1.4.1.2
Multiply by .
Step 1.1.1.4.1.3
Multiply by .
Step 1.1.1.4.2
Subtract from .
Step 1.1.2
Use the form , to find the values of , , and .
Step 1.1.3
Consider the vertex form of a parabola.
Step 1.1.4
Find the value of using the formula .
Step 1.1.4.1
Substitute the values of and into the formula .
Step 1.1.4.2
Simplify the right side.
Step 1.1.4.2.1
Multiply by .
Step 1.1.4.2.2
Dividing two negative values results in a positive value.
Step 1.1.5
Find the value of using the formula .
Step 1.1.5.1
Substitute the values of , and into the formula .
Step 1.1.5.2
Simplify the right side.
Step 1.1.5.2.1
Simplify each term.
Step 1.1.5.2.1.1
Raise to the power of .
Step 1.1.5.2.1.2
Multiply by .
Step 1.1.5.2.1.3
Move the negative in front of the fraction.
Step 1.1.5.2.1.4
Multiply .
Step 1.1.5.2.1.4.1
Multiply by .
Step 1.1.5.2.1.4.2
Multiply by .
Step 1.1.5.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.1.5.2.3
Combine and .
Step 1.1.5.2.4
Combine the numerators over the common denominator.
Step 1.1.5.2.5
Simplify the numerator.
Step 1.1.5.2.5.1
Multiply by .
Step 1.1.5.2.5.2
Add and .
Step 1.1.6
Substitute the values of , , and into the vertex form .
Step 1.2
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4