Algebra Examples

Find the Inverse y=(x+1)^2
Step 1
Interchange the variables.
Step 2
Solve for .
Tap for more steps...
Step 2.1
Rewrite the equation as .
Step 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.3.1
First, use the positive value of the to find the first solution.
Step 2.3.2
Subtract from both sides of the equation.
Step 2.3.3
Next, use the negative value of the to find the second solution.
Step 2.3.4
Subtract from both sides of the equation.
Step 2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3
Replace with to show the final answer.
Step 4
Verify if is the inverse of .
Tap for more steps...
Step 4.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 4.2
Find the range of .
Tap for more steps...
Step 4.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 4.3
Find the domain of .
Tap for more steps...
Step 4.3.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 4.3.2
The domain is all values of that make the expression defined.
Step 4.4
Find the domain of .
Tap for more steps...
Step 4.4.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4.5
Since the domain of is the range of and the range of is the domain of , then is the inverse of .
Step 5