Algebra Examples

Subtract (x+4)/(x^2+6x+9)-1/(x^2-9)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Factor using the perfect square rule.
Tap for more steps...
Step 1.1.1
Rewrite as .
Step 1.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.1.3
Rewrite the polynomial.
Step 1.1.4
Factor using the perfect square trinomial rule , where and .
Step 1.2
Simplify the denominator.
Tap for more steps...
Step 1.2.1
Rewrite as .
Step 1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2
To write as a fraction with a common denominator, multiply by .
Step 3
To write as a fraction with a common denominator, multiply by .
Step 4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 4.1
Multiply by .
Step 4.2
Multiply by .
Step 4.3
Raise to the power of .
Step 4.4
Raise to the power of .
Step 4.5
Use the power rule to combine exponents.
Step 4.6
Add and .
Step 5
Combine the numerators over the common denominator.
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Expand using the FOIL Method.
Tap for more steps...
Step 6.1.1
Apply the distributive property.
Step 6.1.2
Apply the distributive property.
Step 6.1.3
Apply the distributive property.
Step 6.2
Simplify and combine like terms.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Multiply by .
Step 6.2.1.2
Move to the left of .
Step 6.2.1.3
Multiply by .
Step 6.2.2
Add and .
Step 6.3
Apply the distributive property.
Step 6.4
Multiply by .
Step 6.5
Subtract from .
Step 6.6
Add and .
Step 6.7
Subtract from .