Algebra Examples

Find the Vertex y=x^2+14x+21
y=x2+14x+21
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Complete the square for x2+14x+21.
Tap for more steps...
Step 1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=14
c=21
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=1421
Step 1.1.3.2
Cancel the common factor of 14 and 2.
Tap for more steps...
Step 1.1.3.2.1
Factor 2 out of 14.
d=2721
Step 1.1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.2.2.1
Factor 2 out of 21.
d=272(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2721
Step 1.1.3.2.2.3
Rewrite the expression.
d=71
Step 1.1.3.2.2.4
Divide 7 by 1.
d=7
d=7
d=7
d=7
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=21-14241
Step 1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.4.2.1.1
Raise 14 to the power of 2.
e=21-19641
Step 1.1.4.2.1.2
Multiply 4 by 1.
e=21-1964
Step 1.1.4.2.1.3
Divide 196 by 4.
e=21-149
Step 1.1.4.2.1.4
Multiply -1 by 49.
e=21-49
e=21-49
Step 1.1.4.2.2
Subtract 49 from 21.
e=-28
e=-28
e=-28
Step 1.1.5
Substitute the values of a, d, and e into the vertex form (x+7)2-28.
(x+7)2-28
(x+7)2-28
Step 1.2
Set y equal to the new right side.
y=(x+7)2-28
y=(x+7)2-28
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=-7
k=-28
Step 3
Find the vertex (h,k).
(-7,-28)
Step 4
 [x2  12  π  xdx ]