Algebra Examples

Find the Roots (Zeros) 4x^2+5x+2=2x^2+7x-1
4x2+5x+2=2x2+7x-14x2+5x+2=2x2+7x1
Step 1
Move all terms containing xx to the left side of the equation.
Tap for more steps...
Step 1.1
Subtract 2x22x2 from both sides of the equation.
4x2+5x+2-2x2=7x-14x2+5x+22x2=7x1
Step 1.2
Subtract 7x7x from both sides of the equation.
4x2+5x+2-2x2-7x=-14x2+5x+22x27x=1
Step 1.3
Subtract 2x22x2 from 4x24x2.
2x2+5x+2-7x=-12x2+5x+27x=1
Step 1.4
Subtract 7x7x from 5x5x.
2x2-2x+2=-12x22x+2=1
2x2-2x+2=-12x22x+2=1
Step 2
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 2.1
Add 11 to both sides of the equation.
2x2-2x+2+1=02x22x+2+1=0
Step 2.2
Add 22 and 11.
2x2-2x+3=02x22x+3=0
2x2-2x+3=02x22x+3=0
Step 3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 4
Substitute the values a=2a=2, b=-2b=2, and c=3c=3 into the quadratic formula and solve for xx.
2±(-2)2-4(23)222±(2)24(23)22
Step 5
Simplify.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise -22 to the power of 22.
x=2±4-42322x=2±442322
Step 5.1.2
Multiply -423423.
Tap for more steps...
Step 5.1.2.1
Multiply -44 by 22.
x=2±4-8322x=2±48322
Step 5.1.2.2
Multiply -88 by 33.
x=2±4-2422x=2±42422
x=2±4-2422x=2±42422
Step 5.1.3
Subtract 2424 from 44.
x=2±-2022x=2±2022
Step 5.1.4
Rewrite -2020 as -1(20)1(20).
x=2±-12022x=2±12022
Step 5.1.5
Rewrite -1(20)1(20) as -120120.
x=2±-12022x=2±12022
Step 5.1.6
Rewrite -11 as ii.
x=2±i2022x=2±i2022
Step 5.1.7
Rewrite 2020 as 225225.
Tap for more steps...
Step 5.1.7.1
Factor 44 out of 2020.
x=2±i4(5)22x=2±i4(5)22
Step 5.1.7.2
Rewrite 44 as 2222.
x=2±i22522x=2±i22522
x=2±i22522
Step 5.1.8
Pull terms out from under the radical.
x=2±i(25)22
Step 5.1.9
Move 2 to the left of i.
x=2±2i522
x=2±2i522
Step 5.2
Multiply 2 by 2.
x=2±2i54
Step 5.3
Simplify 2±2i54.
x=1±i52
x=1±i52
Step 6
 [x2  12  π  xdx ]