Enter a problem...
Algebra Examples
4x2+5x+2=2x2+7x-14x2+5x+2=2x2+7x−1
Step 1
Step 1.1
Subtract 2x22x2 from both sides of the equation.
4x2+5x+2-2x2=7x-14x2+5x+2−2x2=7x−1
Step 1.2
Subtract 7x7x from both sides of the equation.
4x2+5x+2-2x2-7x=-14x2+5x+2−2x2−7x=−1
Step 1.3
Subtract 2x22x2 from 4x24x2.
2x2+5x+2-7x=-12x2+5x+2−7x=−1
Step 1.4
Subtract 7x7x from 5x5x.
2x2-2x+2=-12x2−2x+2=−1
2x2-2x+2=-12x2−2x+2=−1
Step 2
Step 2.1
Add 11 to both sides of the equation.
2x2-2x+2+1=02x2−2x+2+1=0
Step 2.2
Add 22 and 11.
2x2-2x+3=02x2−2x+3=0
2x2-2x+3=02x2−2x+3=0
Step 3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 4
Substitute the values a=2a=2, b=-2b=−2, and c=3c=3 into the quadratic formula and solve for xx.
2±√(-2)2-4⋅(2⋅3)2⋅22±√(−2)2−4⋅(2⋅3)2⋅2
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise -2−2 to the power of 22.
x=2±√4-4⋅2⋅32⋅2x=2±√4−4⋅2⋅32⋅2
Step 5.1.2
Multiply -4⋅2⋅3−4⋅2⋅3.
Step 5.1.2.1
Multiply -4−4 by 22.
x=2±√4-8⋅32⋅2x=2±√4−8⋅32⋅2
Step 5.1.2.2
Multiply -8−8 by 33.
x=2±√4-242⋅2x=2±√4−242⋅2
x=2±√4-242⋅2x=2±√4−242⋅2
Step 5.1.3
Subtract 2424 from 44.
x=2±√-202⋅2x=2±√−202⋅2
Step 5.1.4
Rewrite -20−20 as -1(20)−1(20).
x=2±√-1⋅202⋅2x=2±√−1⋅202⋅2
Step 5.1.5
Rewrite √-1(20)√−1(20) as √-1⋅√20√−1⋅√20.
x=2±√-1⋅√202⋅2x=2±√−1⋅√202⋅2
Step 5.1.6
Rewrite √-1√−1 as ii.
x=2±i⋅√202⋅2x=2±i⋅√202⋅2
Step 5.1.7
Rewrite 2020 as 22⋅522⋅5.
Step 5.1.7.1
Factor 44 out of 2020.
x=2±i⋅√4(5)2⋅2x=2±i⋅√4(5)2⋅2
Step 5.1.7.2
Rewrite 44 as 2222.
x=2±i⋅√22⋅52⋅2x=2±i⋅√22⋅52⋅2
x=2±i⋅√22⋅52⋅2
Step 5.1.8
Pull terms out from under the radical.
x=2±i⋅(2√5)2⋅2
Step 5.1.9
Move 2 to the left of i.
x=2±2i√52⋅2
x=2±2i√52⋅2
Step 5.2
Multiply 2 by 2.
x=2±2i√54
Step 5.3
Simplify 2±2i√54.
x=1±i√52
x=1±i√52
Step 6