Algebra Examples

Find the Remainder (x^5+32)÷(x+2)
Step 1
To calculate the remainder, first divide the polynomials.
Tap for more steps...
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++++++
Step 1.2
Divide the highest order term in the dividend by the highest order term in divisor .
++++++
Step 1.3
Multiply the new quotient term by the divisor.
++++++
++
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in
++++++
--
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++++++
--
-
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
++++++
--
-+
Step 1.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
++++++
--
-+
Step 1.8
Multiply the new quotient term by the divisor.
-
++++++
--
-+
--
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
++++++
--
-+
++
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
++++++
--
-+
++
+
Step 1.11
Pull the next terms from the original dividend down into the current dividend.
-
++++++
--
-+
++
++
Step 1.12
Divide the highest order term in the dividend by the highest order term in divisor .
-+
++++++
--
-+
++
++
Step 1.13
Multiply the new quotient term by the divisor.
-+
++++++
--
-+
++
++
++
Step 1.14
The expression needs to be subtracted from the dividend, so change all the signs in
-+
++++++
--
-+
++
++
--
Step 1.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
++++++
--
-+
++
++
--
-
Step 1.16
Pull the next terms from the original dividend down into the current dividend.
-+
++++++
--
-+
++
++
--
-+
Step 1.17
Divide the highest order term in the dividend by the highest order term in divisor .
-+-
++++++
--
-+
++
++
--
-+
Step 1.18
Multiply the new quotient term by the divisor.
-+-
++++++
--
-+
++
++
--
-+
--
Step 1.19
The expression needs to be subtracted from the dividend, so change all the signs in
-+-
++++++
--
-+
++
++
--
-+
++
Step 1.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-
++++++
--
-+
++
++
--
-+
++
+
Step 1.21
Pull the next terms from the original dividend down into the current dividend.
-+-
++++++
--
-+
++
++
--
-+
++
++
Step 1.22
Divide the highest order term in the dividend by the highest order term in divisor .
-+-+
++++++
--
-+
++
++
--
-+
++
++
Step 1.23
Multiply the new quotient term by the divisor.
-+-+
++++++
--
-+
++
++
--
-+
++
++
++
Step 1.24
The expression needs to be subtracted from the dividend, so change all the signs in
-+-+
++++++
--
-+
++
++
--
-+
++
++
--
Step 1.25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-+
++++++
--
-+
++
++
--
-+
++
++
--
Step 1.26
Since the remander is , the final answer is the quotient.
Step 2
Since the final term in the resulting expression is not a fraction, the remainder is .