Algebra Examples

Divide Using Long Polynomial Division (9x^4+3x^3y-5x^2y^2+xy^3)÷(3x^3+2x^2y-xy^2)
(9x4+3x3y-5x2y2+xy3)÷(3x3+2x2y-xy2)(9x4+3x3y5x2y2+xy3)÷(3x3+2x2yxy2)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
3x33x3+2x2y2x2y-y2xy2x+009x49x4+3x3y3x3y-5x2y25x2y2+y3xy3x+00
Step 2
Divide the highest order term in the dividend 9x49x4 by the highest order term in divisor 3x33x3.
3x3x
3x33x3+2x2y2x2y-y2xy2x+009x49x4+3x3y3x3y-5x2y25x2y2+y3xy3x+00
Step 3
Multiply the new quotient term by the divisor.
3x3x
3x33x3+2x2y2x2y-y2xy2x+009x49x4+3x3y3x3y-5x2y25x2y2+y3xy3x+00
+9x49x4+6x3y6x3y-3x2y23x2y2+00
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in 9x4+6x3y-3x2y2+09x4+6x3y3x2y2+0
3x3x
3x33x3+2x2y2x2y-y2xy2x+009x49x4+3x3y3x3y-5x2y25x2y2+y3xy3x+00
-9x49x4-6x3y6x3y+3x2y23x2y2-00
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x3x
3x33x3+2x2y2x2y-y2xy2x+009x49x4+3x3y3x3y-5x2y25x2y2+y3xy3x+00
-9x49x4-6x3y6x3y+3x2y23x2y2-00
-3x3y3x3y-2x2y22x2y2+y3xy3x
Step 6
Pull the next terms from the original dividend down into the current dividend.
3x3x
3x33x3+2x2y2x2y-y2xy2x+009x49x4+3x3y3x3y-5x2y25x2y2+y3xy3x+00
-9x49x4-6x3y6x3y+3x2y23x2y2-00
-3x3y3x3y-2x2y22x2y2+y3xy3x+00
Step 7
Divide the highest order term in the dividend -3x3y3x3y by the highest order term in divisor 3x33x3.
3x3x-yy
3x33x3+2x2y2x2y-y2xy2x+009x49x4+3x3y-5x2y2+y3x+0
-9x4-6x3y+3x2y2-0
-3x3y-2x2y2+y3x+0
Step 8
Multiply the new quotient term by the divisor.
3x-y
3x3+2x2y-y2x+09x4+3x3y-5x2y2+y3x+0
-9x4-6x3y+3x2y2-0
-3x3y-2x2y2+y3x+0
-3yx3-2y2x2+y3x+0
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in -3yx3-2y2x2+y3x+0
3x-y
3x3+2x2y-y2x+09x4+3x3y-5x2y2+y3x+0
-9x4-6x3y+3x2y2-0
-3x3y-2x2y2+y3x+0
+3yx3+2y2x2-y3x-0
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x-y
3x3+2x2y-y2x+09x4+3x3y-5x2y2+y3x+0
-9x4-6x3y+3x2y2-0
-3x3y-2x2y2+y3x+0
+3yx3+2y2x2-y3x-0
0
Step 11
Since the remander is 0, the final answer is the quotient.
3x-y
 [x2  12  π  xdx ]