Enter a problem...
Algebra Examples
(9x4+3x3y-5x2y2+xy3)÷(3x3+2x2y-xy2)(9x4+3x3y−5x2y2+xy3)÷(3x3+2x2y−xy2)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
3x33x3 | + | 2x2y2x2y | - | y2xy2x | + | 00 | 9x49x4 | + | 3x3y3x3y | - | 5x2y25x2y2 | + | y3xy3x | + | 00 |
Step 2
Divide the highest order term in the dividend 9x49x4 by the highest order term in divisor 3x33x3.
3x3x | |||||||||||||||||
3x33x3 | + | 2x2y2x2y | - | y2xy2x | + | 00 | 9x49x4 | + | 3x3y3x3y | - | 5x2y25x2y2 | + | y3xy3x | + | 00 |
Step 3
Multiply the new quotient term by the divisor.
3x3x | |||||||||||||||||
3x33x3 | + | 2x2y2x2y | - | y2xy2x | + | 00 | 9x49x4 | + | 3x3y3x3y | - | 5x2y25x2y2 | + | y3xy3x | + | 00 | ||
+ | 9x49x4 | + | 6x3y6x3y | - | 3x2y23x2y2 | + | 00 |
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in 9x4+6x3y-3x2y2+09x4+6x3y−3x2y2+0
3x3x | |||||||||||||||||
3x33x3 | + | 2x2y2x2y | - | y2xy2x | + | 00 | 9x49x4 | + | 3x3y3x3y | - | 5x2y25x2y2 | + | y3xy3x | + | 00 | ||
- | 9x49x4 | - | 6x3y6x3y | + | 3x2y23x2y2 | - | 00 |
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x3x | |||||||||||||||||
3x33x3 | + | 2x2y2x2y | - | y2xy2x | + | 00 | 9x49x4 | + | 3x3y3x3y | - | 5x2y25x2y2 | + | y3xy3x | + | 00 | ||
- | 9x49x4 | - | 6x3y6x3y | + | 3x2y23x2y2 | - | 00 | ||||||||||
- | 3x3y3x3y | - | 2x2y22x2y2 | + | y3xy3x |
Step 6
Pull the next terms from the original dividend down into the current dividend.
3x3x | |||||||||||||||||
3x33x3 | + | 2x2y2x2y | - | y2xy2x | + | 00 | 9x49x4 | + | 3x3y3x3y | - | 5x2y25x2y2 | + | y3xy3x | + | 00 | ||
- | 9x49x4 | - | 6x3y6x3y | + | 3x2y23x2y2 | - | 00 | ||||||||||
- | 3x3y3x3y | - | 2x2y22x2y2 | + | y3xy3x | + | 00 |
Step 7
Divide the highest order term in the dividend -3x3y−3x3y by the highest order term in divisor 3x33x3.
3x3x | - | yy | |||||||||||||||
3x33x3 | + | 2x2y2x2y | - | y2xy2x | + | 00 | 9x49x4 | + | 3x3y | - | 5x2y2 | + | y3x | + | 0 | ||
- | 9x4 | - | 6x3y | + | 3x2y2 | - | 0 | ||||||||||
- | 3x3y | - | 2x2y2 | + | y3x | + | 0 |
Step 8
Multiply the new quotient term by the divisor.
3x | - | y | |||||||||||||||
3x3 | + | 2x2y | - | y2x | + | 0 | 9x4 | + | 3x3y | - | 5x2y2 | + | y3x | + | 0 | ||
- | 9x4 | - | 6x3y | + | 3x2y2 | - | 0 | ||||||||||
- | 3x3y | - | 2x2y2 | + | y3x | + | 0 | ||||||||||
- | 3yx3 | - | 2y2x2 | + | y3x | + | 0 |
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in -3yx3-2y2x2+y3x+0
3x | - | y | |||||||||||||||
3x3 | + | 2x2y | - | y2x | + | 0 | 9x4 | + | 3x3y | - | 5x2y2 | + | y3x | + | 0 | ||
- | 9x4 | - | 6x3y | + | 3x2y2 | - | 0 | ||||||||||
- | 3x3y | - | 2x2y2 | + | y3x | + | 0 | ||||||||||
+ | 3yx3 | + | 2y2x2 | - | y3x | - | 0 |
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x | - | y | |||||||||||||||
3x3 | + | 2x2y | - | y2x | + | 0 | 9x4 | + | 3x3y | - | 5x2y2 | + | y3x | + | 0 | ||
- | 9x4 | - | 6x3y | + | 3x2y2 | - | 0 | ||||||||||
- | 3x3y | - | 2x2y2 | + | y3x | + | 0 | ||||||||||
+ | 3yx3 | + | 2y2x2 | - | y3x | - | 0 | ||||||||||
0 |
Step 11
Since the remander is 0, the final answer is the quotient.
3x-y