Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Add to both sides of the equation.
Step 2.3
Divide each term in by and simplify.
Step 2.3.1
Divide each term in by .
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Cancel the common factor of .
Step 2.3.2.1.1
Cancel the common factor.
Step 2.3.2.1.2
Divide by .
Step 2.3.3
Simplify the right side.
Step 2.3.3.1
Cancel the common factor of and .
Step 2.3.3.1.1
Factor out of .
Step 2.3.3.1.2
Cancel the common factors.
Step 2.3.3.1.2.1
Factor out of .
Step 2.3.3.1.2.2
Cancel the common factor.
Step 2.3.3.1.2.3
Rewrite the expression.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Cancel the common factor of and .
Step 4.2.3.1
Factor out of .
Step 4.2.3.2
Factor out of .
Step 4.2.3.3
Factor out of .
Step 4.2.3.4
Cancel the common factors.
Step 4.2.3.4.1
Factor out of .
Step 4.2.3.4.2
Cancel the common factor.
Step 4.2.3.4.3
Rewrite the expression.
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
Combine the opposite terms in .
Step 4.2.5.1
Add and .
Step 4.2.5.2
Add and .
Step 4.2.6
Cancel the common factor of .
Step 4.2.6.1
Cancel the common factor.
Step 4.2.6.2
Divide by .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify each term.
Step 4.3.3.1
Apply the distributive property.
Step 4.3.3.2
Cancel the common factor of .
Step 4.3.3.2.1
Cancel the common factor.
Step 4.3.3.2.2
Rewrite the expression.
Step 4.3.3.3
Cancel the common factor of .
Step 4.3.3.3.1
Factor out of .
Step 4.3.3.3.2
Cancel the common factor.
Step 4.3.3.3.3
Rewrite the expression.
Step 4.3.4
Combine the opposite terms in .
Step 4.3.4.1
Subtract from .
Step 4.3.4.2
Add and .
Step 4.4
Since and , then is the inverse of .