Algebra Examples

Write as a Single Logarithm 1/3( log of x- log of y)
13(log(x)-log(y))13(log(x)log(y))
Step 1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
13log(xy)13log(xy)
Step 2
Simplify 13log(xy)13log(xy) by moving 1313 inside the logarithm.
log((xy)13)log((xy)13)
Step 3
Apply the product rule to xyxy.
log(x13y13)log(x13y13)
 [x2  12  π  xdx ]  x2  12  π  xdx