Enter a problem...
Algebra Examples
m(x)=-x2+14xm(x)=−x2+14x
Step 1
The maximum of a quadratic function occurs at x=-b2a. If a is negative, the maximum value of the function is f(-b2a).
fmaxx=ax2+bx+c occurs at x=-b2a
Step 2
Step 2.1
Substitute in the values of a and b.
x=-142(-1)
Step 2.2
Remove parentheses.
x=-142(-1)
Step 2.3
Simplify -142(-1).
Step 2.3.1
Cancel the common factor of 14 and 2.
Step 2.3.1.1
Factor 2 out of 14.
x=-2⋅72⋅-1
Step 2.3.1.2
Move the negative one from the denominator of 7-1.
x=-(-1⋅7)
x=-(-1⋅7)
Step 2.3.2
Multiply -(-1⋅7).
Step 2.3.2.1
Multiply -1 by 7.
x=--7
Step 2.3.2.2
Multiply -1 by -7.
x=7
x=7
x=7
x=7
Step 3
Step 3.1
Replace the variable x with 7 in the expression.
m(7)=-(7)2+14(7)
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Raise 7 to the power of 2.
m(7)=-1⋅49+14(7)
Step 3.2.1.2
Multiply -1 by 49.
m(7)=-49+14(7)
Step 3.2.1.3
Multiply 14 by 7.
m(7)=-49+98
m(7)=-49+98
Step 3.2.2
Add -49 and 98.
m(7)=49
Step 3.2.3
The final answer is 49.
49
49
49
Step 4
Use the x and y values to find where the maximum occurs.
(7,49)
Step 5