Enter a problem...
Algebra Examples
4x2+3x-1=04x2+3x−1=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=4a=4, b=3b=3, and c=-1c=−1 into the quadratic formula and solve for xx.
-3±√32-4⋅(4⋅-1)2⋅4−3±√32−4⋅(4⋅−1)2⋅4
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise 33 to the power of 22.
x=-3±√9-4⋅4⋅-12⋅4x=−3±√9−4⋅4⋅−12⋅4
Step 3.1.2
Multiply -4⋅4⋅-1−4⋅4⋅−1.
Step 3.1.2.1
Multiply -4−4 by 44.
x=-3±√9-16⋅-12⋅4x=−3±√9−16⋅−12⋅4
Step 3.1.2.2
Multiply -16−16 by -1−1.
x=-3±√9+162⋅4x=−3±√9+162⋅4
x=-3±√9+162⋅4x=−3±√9+162⋅4
Step 3.1.3
Add 99 and 1616.
x=-3±√252⋅4x=−3±√252⋅4
Step 3.1.4
Rewrite 2525 as 5252.
x=-3±√522⋅4x=−3±√522⋅4
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=-3±52⋅4x=−3±52⋅4
x=-3±52⋅4x=−3±52⋅4
Step 3.2
Multiply 22 by 44.
x=-3±58x=−3±58
x=-3±58x=−3±58
Step 4
The final answer is the combination of both solutions.
x=14,-1x=14,−1