Algebra Examples

Write as a Single Logarithm 2( log base 3 of 8+ log base 3 of z)- log base 3 of 3^4-7^2
2(log3(8)+log3(z))-log3(34-72)2(log3(8)+log3(z))log3(3472)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy)logb(x)+logb(y)=logb(xy).
2log3(8z)-log3(34-72)2log3(8z)log3(3472)
Step 1.2
Simplify 2log3(8z)2log3(8z) by moving 22 inside the logarithm.
log3((8z)2)-log3(34-72)log3((8z)2)log3(3472)
Step 1.3
Apply the product rule to 8z8z.
log3(82z2)-log3(34-72)log3(82z2)log3(3472)
Step 1.4
Raise 88 to the power of 22.
log3(64z2)-log3(34-72)log3(64z2)log3(3472)
Step 1.5
Simplify each term.
Tap for more steps...
Step 1.5.1
Raise 33 to the power of 44.
log3(64z2)-log3(81-72)log3(64z2)log3(8172)
Step 1.5.2
Raise 77 to the power of 22.
log3(64z2)-log3(81-149)log3(64z2)log3(81149)
Step 1.5.3
Multiply -11 by 4949.
log3(64z2)-log3(81-49)log3(64z2)log3(8149)
log3(64z2)-log3(81-49)log3(64z2)log3(8149)
Step 1.6
Subtract 4949 from 8181.
log3(64z2)-log3(32)log3(64z2)log3(32)
log3(64z2)-log3(32)log3(64z2)log3(32)
Step 2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
log3(64z232)log3(64z232)
Step 3
Cancel the common factor of 6464 and 3232.
Tap for more steps...
Step 3.1
Factor 3232 out of 64z264z2.
log3(32(2z2)32)log3(32(2z2)32)
Step 3.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1
Factor 3232 out of 3232.
log3(32(2z2)32(1))log3(32(2z2)32(1))
Step 3.2.2
Cancel the common factor.
log3(32(2z2)321)
Step 3.2.3
Rewrite the expression.
log3(2z21)
Step 3.2.4
Divide 2z2 by 1.
log3(2z2)
log3(2z2)
log3(2z2)
 [x2  12  π  xdx ]