Enter a problem...
Algebra Examples
2(log3(8)+log3(z))-log3(34-72)2(log3(8)+log3(z))−log3(34−72)
Step 1
Step 1.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy)logb(x)+logb(y)=logb(xy).
2log3(8z)-log3(34-72)2log3(8z)−log3(34−72)
Step 1.2
Simplify 2log3(8z)2log3(8z) by moving 22 inside the logarithm.
log3((8z)2)-log3(34-72)log3((8z)2)−log3(34−72)
Step 1.3
Apply the product rule to 8z8z.
log3(82z2)-log3(34-72)log3(82z2)−log3(34−72)
Step 1.4
Raise 88 to the power of 22.
log3(64z2)-log3(34-72)log3(64z2)−log3(34−72)
Step 1.5
Simplify each term.
Step 1.5.1
Raise 33 to the power of 44.
log3(64z2)-log3(81-72)log3(64z2)−log3(81−72)
Step 1.5.2
Raise 77 to the power of 22.
log3(64z2)-log3(81-1⋅49)log3(64z2)−log3(81−1⋅49)
Step 1.5.3
Multiply -1−1 by 4949.
log3(64z2)-log3(81-49)log3(64z2)−log3(81−49)
log3(64z2)-log3(81-49)log3(64z2)−log3(81−49)
Step 1.6
Subtract 4949 from 8181.
log3(64z2)-log3(32)log3(64z2)−log3(32)
log3(64z2)-log3(32)log3(64z2)−log3(32)
Step 2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
log3(64z232)log3(64z232)
Step 3
Step 3.1
Factor 3232 out of 64z264z2.
log3(32(2z2)32)log3(32(2z2)32)
Step 3.2
Cancel the common factors.
Step 3.2.1
Factor 3232 out of 3232.
log3(32(2z2)32(1))log3(32(2z2)32(1))
Step 3.2.2
Cancel the common factor.
log3(32(2z2)32⋅1)
Step 3.2.3
Rewrite the expression.
log3(2z21)
Step 3.2.4
Divide 2z2 by 1.
log3(2z2)
log3(2z2)
log3(2z2)