Enter a problem...
Algebra Examples
Step 1
Step 1.1
Use the quotient property of logarithms, .
Step 1.2
Cancel the common factor of and .
Step 1.2.1
Factor out of .
Step 1.2.2
Cancel the common factors.
Step 1.2.2.1
Factor out of .
Step 1.2.2.2
Cancel the common factor.
Step 1.2.2.3
Rewrite the expression.
Step 1.3
Cancel the common factor of and .
Step 1.3.1
Factor out of .
Step 1.3.2
Cancel the common factors.
Step 1.3.2.1
Raise to the power of .
Step 1.3.2.2
Factor out of .
Step 1.3.2.3
Cancel the common factor.
Step 1.3.2.4
Rewrite the expression.
Step 1.3.2.5
Divide by .
Step 2
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Cancel the common factor of .
Step 3.1.2.1.1
Cancel the common factor.
Step 3.1.2.1.2
Divide by .
Step 3.1.3
Simplify the right side.
Step 3.1.3.1
Divide by .
Step 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.3
Simplify .
Step 3.3.1
Rewrite as .
Step 3.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.4.1
First, use the positive value of the to find the first solution.
Step 3.4.2
Next, use the negative value of the to find the second solution.
Step 3.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Exclude the solutions that do not make true.