Enter a problem...
Algebra Examples
4x2-8x-12=04x2−8x−12=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=4a=4, b=-8b=−8, and c=-12c=−12 into the quadratic formula and solve for xx.
8±√(-8)2-4⋅(4⋅-12)2⋅48±√(−8)2−4⋅(4⋅−12)2⋅4
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise -8−8 to the power of 22.
x=8±√64-4⋅4⋅-122⋅4x=8±√64−4⋅4⋅−122⋅4
Step 3.1.2
Multiply -4⋅4⋅-12−4⋅4⋅−12.
Step 3.1.2.1
Multiply -4−4 by 44.
x=8±√64-16⋅-122⋅4x=8±√64−16⋅−122⋅4
Step 3.1.2.2
Multiply -16−16 by -12−12.
x=8±√64+1922⋅4x=8±√64+1922⋅4
x=8±√64+1922⋅4x=8±√64+1922⋅4
Step 3.1.3
Add 6464 and 192192.
x=8±√2562⋅4x=8±√2562⋅4
Step 3.1.4
Rewrite 256256 as 162162.
x=8±√1622⋅4x=8±√1622⋅4
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=8±162⋅4x=8±162⋅4
x=8±162⋅4x=8±162⋅4
Step 3.2
Multiply 22 by 44.
x=8±168x=8±168
Step 3.3
Simplify 8±1688±168.
x=1±2x=1±2
x=1±2x=1±2
Step 4
The final answer is the combination of both solutions.
x=3,-1x=3,−1