Algebra Examples

Apply the Quadratic Formula x^2-14x+49
x2-14x+49
Step 1
Set x2-14x+49 equal to 0.
x2-14x+49=0
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3
Substitute the values a=1, b=-14, and c=49 into the quadratic formula and solve for x.
14±(-14)2-4(149)21
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise -14 to the power of 2.
x=14±196-414921
Step 4.1.2
Multiply -4149.
Tap for more steps...
Step 4.1.2.1
Multiply -4 by 1.
x=14±196-44921
Step 4.1.2.2
Multiply -4 by 49.
x=14±196-19621
x=14±196-19621
Step 4.1.3
Subtract 196 from 196.
x=14±021
Step 4.1.4
Rewrite 0 as 02.
x=14±0221
Step 4.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=14±021
Step 4.1.6
14 plus or minus 0 is 14.
x=1421
x=1421
Step 4.2
Multiply 2 by 1.
x=142
Step 4.3
Divide 14 by 2.
x=7
x=7
Step 5
The final answer is the combination of both solutions.
x=7 Double roots
x2-14x+49
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]