Algebra Examples

Simplify w^3-w(w^2+2w-1)+2w
w3-w(w2+2w-1)+2w
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Apply the distributive property.
w3-ww2-w(2w)-w-1+2w
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Multiply w by w2 by adding the exponents.
Tap for more steps...
Step 1.2.1.1
Move w2.
w3-(w2w)-w(2w)-w-1+2w
Step 1.2.1.2
Multiply w2 by w.
Tap for more steps...
Step 1.2.1.2.1
Raise w to the power of 1.
w3-(w2w1)-w(2w)-w-1+2w
Step 1.2.1.2.2
Use the power rule aman=am+n to combine exponents.
w3-w2+1-w(2w)-w-1+2w
w3-w2+1-w(2w)-w-1+2w
Step 1.2.1.3
Add 2 and 1.
w3-w3-w(2w)-w-1+2w
w3-w3-w(2w)-w-1+2w
Step 1.2.2
Rewrite using the commutative property of multiplication.
w3-w3-12ww-w-1+2w
Step 1.2.3
Multiply -w-1.
Tap for more steps...
Step 1.2.3.1
Multiply -1 by -1.
w3-w3-12ww+1w+2w
Step 1.2.3.2
Multiply w by 1.
w3-w3-12ww+w+2w
w3-w3-12ww+w+2w
w3-w3-12ww+w+2w
Step 1.3
Simplify each term.
Tap for more steps...
Step 1.3.1
Multiply w by w by adding the exponents.
Tap for more steps...
Step 1.3.1.1
Move w.
w3-w3-12(ww)+w+2w
Step 1.3.1.2
Multiply w by w.
w3-w3-12w2+w+2w
w3-w3-12w2+w+2w
Step 1.3.2
Multiply -1 by 2.
w3-w3-2w2+w+2w
w3-w3-2w2+w+2w
w3-w3-2w2+w+2w
Step 2
Simplify by adding terms.
Tap for more steps...
Step 2.1
Subtract w3 from w3.
0-2w2+w+2w
Step 2.2
Subtract 2w2 from 0.
-2w2+w+2w
Step 2.3
Add w and 2w.
-2w2+3w
-2w2+3w
 [x2  12  π  xdx ]