Algebra Examples

Simplify (a^3-b^3)/(a^2-b^2)
a3-b3a2-b2a3b3a2b2
Step 1
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3b3=(ab)(a2+ab+b2) where a=aa=a and b=bb=b.
(a-b)(a2+ab+b2)a2-b2(ab)(a2+ab+b2)a2b2
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=aa=a and b=bb=b.
(a-b)(a2+ab+b2)(a+b)(a-b)(ab)(a2+ab+b2)(a+b)(ab)
Step 3
Cancel the common factor of a-bab.
Tap for more steps...
Step 3.1
Cancel the common factor.
(a-b)(a2+ab+b2)(a+b)(a-b)
Step 3.2
Rewrite the expression.
a2+ab+b2a+b
a2+ab+b2a+b
 [x2  12  π  xdx ]