Enter a problem...
Algebra Examples
a3-b3a2-b2a3−b3a2−b2
Step 1
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=aa=a and b=bb=b.
(a-b)(a2+ab+b2)a2-b2(a−b)(a2+ab+b2)a2−b2
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=aa=a and b=bb=b.
(a-b)(a2+ab+b2)(a+b)(a-b)(a−b)(a2+ab+b2)(a+b)(a−b)
Step 3
Step 3.1
Cancel the common factor.
(a-b)(a2+ab+b2)(a+b)(a-b)
Step 3.2
Rewrite the expression.
a2+ab+b2a+b
a2+ab+b2a+b