Algebra Examples

Find the Axis of Symmetry y=x^2-4x+3
y=x2-4x+3y=x24x+3
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Complete the square for x2-4x+3x24x+3.
Tap for more steps...
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-4b=4
c=3c=3
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-421d=421
Step 1.1.3.2
Cancel the common factor of -44 and 22.
Tap for more steps...
Step 1.1.3.2.1
Factor 22 out of -44.
d=2-221d=2221
Step 1.1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.2.2.1
Factor 22 out of 2121.
d=2-22(1)d=222(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2-221d=2221
Step 1.1.3.2.2.3
Rewrite the expression.
d=-21d=21
Step 1.1.3.2.2.4
Divide -22 by 11.
d=-2d=2
d=-2d=2
d=-2d=2
d=-2d=2
Step 1.1.4
Find the value of ee using the formula e=c-b24ae=cb24a.
Tap for more steps...
Step 1.1.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=cb24a.
e=3-(-4)241e=3(4)241
Step 1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.4.2.1.1
Cancel the common factor of (-4)2(4)2 and 44.
Tap for more steps...
Step 1.1.4.2.1.1.1
Rewrite -44 as -1(4)1(4).
e=3-(-1(4))241e=3(1(4))241
Step 1.1.4.2.1.1.2
Apply the product rule to -1(4)1(4).
e=3-(-1)24241e=3(1)24241
Step 1.1.4.2.1.1.3
Raise -11 to the power of 22.
e=3-14241e=314241
Step 1.1.4.2.1.1.4
Multiply 4242 by 11.
e=3-4241e=34241
Step 1.1.4.2.1.1.5
Factor 44 out of 4242.
e=3-4441e=34441
Step 1.1.4.2.1.1.6
Cancel the common factors.
Tap for more steps...
Step 1.1.4.2.1.1.6.1
Factor 44 out of 4141.
e=3-444(1)e=3444(1)
Step 1.1.4.2.1.1.6.2
Cancel the common factor.
e=3-4441e=34441
Step 1.1.4.2.1.1.6.3
Rewrite the expression.
e=3-41e=341
Step 1.1.4.2.1.1.6.4
Divide 44 by 11.
e=3-14e=314
e=3-14e=314
e=3-14e=314
Step 1.1.4.2.1.2
Multiply -11 by 44.
e=3-4e=34
e=3-4e=34
Step 1.1.4.2.2
Subtract 44 from 33.
e=-1e=1
e=-1e=1
e=-1e=1
Step 1.1.5
Substitute the values of aa, dd, and ee into the vertex form (x-2)2-1(x2)21.
(x-2)2-1(x2)21
(x-2)2-1(x2)21
Step 1.2
Set yy equal to the new right side.
y=(x-2)2-1y=(x2)21
y=(x-2)2-1y=(x2)21
Step 2
Use the vertex form, y=a(x-h)2+ky=a(xh)2+k, to determine the values of aa, hh, and kk.
a=1a=1
h=2h=2
k=-1k=1
Step 3
Since the value of aa is positive, the parabola opens up.
Opens Up
Step 4
Find the vertex (h,k)(h,k).
(2,-1)(2,1)
Step 5
Find pp, the distance from the vertex to the focus.
Tap for more steps...
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a14a
Step 5.2
Substitute the value of aa into the formula.
141141
Step 5.3
Cancel the common factor of 11.
Tap for more steps...
Step 5.3.1
Cancel the common factor.
141141
Step 5.3.2
Rewrite the expression.
1414
1414
1414
Step 6
Find the focus.
Tap for more steps...
Step 6.1
The focus of a parabola can be found by adding pp to the y-coordinate kk if the parabola opens up or down.
(h,k+p)(h,k+p)
Step 6.2
Substitute the known values of hh, pp, and kk into the formula and simplify.
(2,-34)(2,34)
(2,-34)(2,34)
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=2x=2
Step 8
 [x2  12  π  xdx ]  x2  12  π  xdx