Enter a problem...
Algebra Examples
y=x2-4x+3y=x2−4x+3
Step 1
Step 1.1
Complete the square for x2-4x+3x2−4x+3.
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-4b=−4
c=3c=3
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-42⋅1d=−42⋅1
Step 1.1.3.2
Cancel the common factor of -4−4 and 22.
Step 1.1.3.2.1
Factor 22 out of -4−4.
d=2⋅-22⋅1d=2⋅−22⋅1
Step 1.1.3.2.2
Cancel the common factors.
Step 1.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-22(1)d=2⋅−22(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2⋅-22⋅1d=2⋅−22⋅1
Step 1.1.3.2.2.3
Rewrite the expression.
d=-21d=−21
Step 1.1.3.2.2.4
Divide -2−2 by 11.
d=-2d=−2
d=-2d=−2
d=-2d=−2
d=-2d=−2
Step 1.1.4
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 1.1.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=3-(-4)24⋅1e=3−(−4)24⋅1
Step 1.1.4.2
Simplify the right side.
Step 1.1.4.2.1
Simplify each term.
Step 1.1.4.2.1.1
Cancel the common factor of (-4)2(−4)2 and 44.
Step 1.1.4.2.1.1.1
Rewrite -4−4 as -1(4)−1(4).
e=3-(-1(4))24⋅1e=3−(−1(4))24⋅1
Step 1.1.4.2.1.1.2
Apply the product rule to -1(4)−1(4).
e=3-(-1)2⋅424⋅1e=3−(−1)2⋅424⋅1
Step 1.1.4.2.1.1.3
Raise -1−1 to the power of 22.
e=3-1⋅424⋅1e=3−1⋅424⋅1
Step 1.1.4.2.1.1.4
Multiply 4242 by 11.
e=3-424⋅1e=3−424⋅1
Step 1.1.4.2.1.1.5
Factor 44 out of 4242.
e=3-4⋅44⋅1e=3−4⋅44⋅1
Step 1.1.4.2.1.1.6
Cancel the common factors.
Step 1.1.4.2.1.1.6.1
Factor 44 out of 4⋅14⋅1.
e=3-4⋅44(1)e=3−4⋅44(1)
Step 1.1.4.2.1.1.6.2
Cancel the common factor.
e=3-4⋅44⋅1e=3−4⋅44⋅1
Step 1.1.4.2.1.1.6.3
Rewrite the expression.
e=3-41e=3−41
Step 1.1.4.2.1.1.6.4
Divide 44 by 11.
e=3-1⋅4e=3−1⋅4
e=3-1⋅4e=3−1⋅4
e=3-1⋅4e=3−1⋅4
Step 1.1.4.2.1.2
Multiply -1−1 by 44.
e=3-4e=3−4
e=3-4e=3−4
Step 1.1.4.2.2
Subtract 44 from 33.
e=-1e=−1
e=-1e=−1
e=-1e=−1
Step 1.1.5
Substitute the values of aa, dd, and ee into the vertex form (x-2)2-1(x−2)2−1.
(x-2)2-1(x−2)2−1
(x-2)2-1(x−2)2−1
Step 1.2
Set yy equal to the new right side.
y=(x-2)2-1y=(x−2)2−1
y=(x-2)2-1y=(x−2)2−1
Step 2
Use the vertex form, y=a(x-h)2+ky=a(x−h)2+k, to determine the values of aa, hh, and kk.
a=1a=1
h=2h=2
k=-1k=−1
Step 3
Since the value of aa is positive, the parabola opens up.
Opens Up
Step 4
Find the vertex (h,k)(h,k).
(2,-1)(2,−1)
Step 5
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a14a
Step 5.2
Substitute the value of aa into the formula.
14⋅114⋅1
Step 5.3
Cancel the common factor of 11.
Step 5.3.1
Cancel the common factor.
14⋅114⋅1
Step 5.3.2
Rewrite the expression.
1414
1414
1414
Step 6
Step 6.1
The focus of a parabola can be found by adding pp to the y-coordinate kk if the parabola opens up or down.
(h,k+p)(h,k+p)
Step 6.2
Substitute the known values of hh, pp, and kk into the formula and simplify.
(2,-34)(2,−34)
(2,-34)(2,−34)
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=2x=2
Step 8