Enter a problem...
Algebra Examples
x2=24yx2=24y
Step 1
Step 1.1
Rewrite the equation as 24y=x2.
24y=x2
Step 1.2
Divide each term in 24y=x2 by 24 and simplify.
Step 1.2.1
Divide each term in 24y=x2 by 24.
24y24=x224
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of 24.
Step 1.2.2.1.1
Cancel the common factor.
24y24=x224
Step 1.2.2.1.2
Divide y by 1.
y=x224
y=x224
y=x224
y=x224
y=x224
Step 2
Step 2.1
Rewrite the equation in vertex form.
Step 2.1.1
Complete the square for x224.
Step 2.1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=124
b=0
c=0
Step 2.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.1.1.3
Find the value of d using the formula d=b2a.
Step 2.1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=02(124)
Step 2.1.1.3.2
Simplify the right side.
Step 2.1.1.3.2.1
Cancel the common factor of 0 and 2.
Step 2.1.1.3.2.1.1
Factor 2 out of 0.
d=2(0)2(124)
Step 2.1.1.3.2.1.2
Cancel the common factors.
Step 2.1.1.3.2.1.2.1
Cancel the common factor.
d=2⋅02(124)
Step 2.1.1.3.2.1.2.2
Rewrite the expression.
d=0124
d=0124
d=0124
Step 2.1.1.3.2.2
Multiply the numerator by the reciprocal of the denominator.
d=0⋅24
Step 2.1.1.3.2.3
Multiply 0 by 24.
d=0
d=0
d=0
Step 2.1.1.4
Find the value of e using the formula e=c-b24a.
Step 2.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-024(124)
Step 2.1.1.4.2
Simplify the right side.
Step 2.1.1.4.2.1
Simplify each term.
Step 2.1.1.4.2.1.1
Raising 0 to any positive power yields 0.
e=0-04(124)
Step 2.1.1.4.2.1.2
Combine 4 and 124.
e=0-0424
Step 2.1.1.4.2.1.3
Cancel the common factor of 4 and 24.
Step 2.1.1.4.2.1.3.1
Factor 4 out of 4.
e=0-04(1)24
Step 2.1.1.4.2.1.3.2
Cancel the common factors.
Step 2.1.1.4.2.1.3.2.1
Factor 4 out of 24.
e=0-04⋅14⋅6
Step 2.1.1.4.2.1.3.2.2
Cancel the common factor.
e=0-04⋅14⋅6
Step 2.1.1.4.2.1.3.2.3
Rewrite the expression.
e=0-016
e=0-016
e=0-016
Step 2.1.1.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
e=0-(0⋅6)
Step 2.1.1.4.2.1.5
Multiply -(0⋅6).
Step 2.1.1.4.2.1.5.1
Multiply 0 by 6.
e=0-0
Step 2.1.1.4.2.1.5.2
Multiply -1 by 0.
e=0+0
e=0+0
e=0+0
Step 2.1.1.4.2.2
Add 0 and 0.
e=0
e=0
e=0
Step 2.1.1.5
Substitute the values of a, d, and e into the vertex form 124x2.
124x2
124x2
Step 2.1.2
Set y equal to the new right side.
y=124x2
y=124x2
Step 2.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=124
h=0
k=0
Step 2.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 2.4
Find the vertex (h,k).
(0,0)
Step 2.5
Find p, the distance from the vertex to the focus.
Step 2.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 2.5.2
Substitute the value of a into the formula.
14⋅124
Step 2.5.3
Simplify.
Step 2.5.3.1
Combine 4 and 124.
1424
Step 2.5.3.2
Cancel the common factor of 4 and 24.
Step 2.5.3.2.1
Factor 4 out of 4.
14(1)24
Step 2.5.3.2.2
Cancel the common factors.
Step 2.5.3.2.2.1
Factor 4 out of 24.
14⋅14⋅6
Step 2.5.3.2.2.2
Cancel the common factor.
14⋅14⋅6
Step 2.5.3.2.2.3
Rewrite the expression.
116
116
116
Step 2.5.3.3
Multiply the numerator by the reciprocal of the denominator.
1⋅6
Step 2.5.3.4
Multiply 6 by 1.
6
6
6
Step 2.6
Find the focus.
Step 2.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 2.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(0,6)
(0,6)
Step 2.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=0
Step 2.8
Find the directrix.
Step 2.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 2.8.2
Substitute the known values of p and k into the formula and simplify.
y=-6
y=-6
Step 2.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (0,0)
Focus: (0,6)
Axis of Symmetry: x=0
Directrix: y=-6
Direction: Opens Up
Vertex: (0,0)
Focus: (0,6)
Axis of Symmetry: x=0
Directrix: y=-6
Step 3
Step 3.1
Replace the variable x with -1 in the expression.
f(-1)=(-1)224
Step 3.2
Simplify the result.
Step 3.2.1
Raise -1 to the power of 2.
f(-1)=124
Step 3.2.2
The final answer is 124.
124
124
Step 3.3
The y value at x=-1 is 124.
y=124
Step 3.4
Replace the variable x with -2 in the expression.
f(-2)=(-2)224
Step 3.5
Simplify the result.
Step 3.5.1
Raise -2 to the power of 2.
f(-2)=424
Step 3.5.2
Cancel the common factor of 4 and 24.
Step 3.5.2.1
Factor 4 out of 4.
f(-2)=4(1)24
Step 3.5.2.2
Cancel the common factors.
Step 3.5.2.2.1
Factor 4 out of 24.
f(-2)=4⋅14⋅6
Step 3.5.2.2.2
Cancel the common factor.
f(-2)=4⋅14⋅6
Step 3.5.2.2.3
Rewrite the expression.
f(-2)=16
f(-2)=16
f(-2)=16
Step 3.5.3
The final answer is 16.
16
16
Step 3.6
The y value at x=-2 is 16.
y=16
Step 3.7
Replace the variable x with 1 in the expression.
f(1)=(1)224
Step 3.8
Simplify the result.
Step 3.8.1
One to any power is one.
f(1)=124
Step 3.8.2
The final answer is 124.
124
124
Step 3.9
The y value at x=1 is 124.
y=124
Step 3.10
Replace the variable x with 2 in the expression.
f(2)=(2)224
Step 3.11
Simplify the result.
Step 3.11.1
Raise 2 to the power of 2.
f(2)=424
Step 3.11.2
Cancel the common factor of 4 and 24.
Step 3.11.2.1
Factor 4 out of 4.
f(2)=4(1)24
Step 3.11.2.2
Cancel the common factors.
Step 3.11.2.2.1
Factor 4 out of 24.
f(2)=4⋅14⋅6
Step 3.11.2.2.2
Cancel the common factor.
f(2)=4⋅14⋅6
Step 3.11.2.2.3
Rewrite the expression.
f(2)=16
f(2)=16
f(2)=16
Step 3.11.3
The final answer is 16.
16
16
Step 3.12
The y value at x=2 is 16.
y=16
Step 3.13
Graph the parabola using its properties and the selected points.
xy-216-1124001124216
xy-216-1124001124216
Step 4
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (0,0)
Focus: (0,6)
Axis of Symmetry: x=0
Directrix: y=-6
xy-216-1124001124216
Step 5