Enter a problem...
Algebra Examples
y=23x-4
Step 1
Step 1.1
To find the x-intercept(s), substitute in 0 for y and solve for x.
0=23x-4
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as 23x-4=0.
23x-4=0
Step 1.2.2
Combine 23 and x.
2x3-4=0
Step 1.2.3
Add 4 to both sides of the equation.
2x3=4
Step 1.2.4
Multiply both sides of the equation by 32.
32⋅2x3=32⋅4
Step 1.2.5
Simplify both sides of the equation.
Step 1.2.5.1
Simplify the left side.
Step 1.2.5.1.1
Simplify 32⋅2x3.
Step 1.2.5.1.1.1
Cancel the common factor of 3.
Step 1.2.5.1.1.1.1
Cancel the common factor.
32⋅2x3=32⋅4
Step 1.2.5.1.1.1.2
Rewrite the expression.
12(2x)=32⋅4
12(2x)=32⋅4
Step 1.2.5.1.1.2
Cancel the common factor of 2.
Step 1.2.5.1.1.2.1
Factor 2 out of 2x.
12(2(x))=32⋅4
Step 1.2.5.1.1.2.2
Cancel the common factor.
12(2x)=32⋅4
Step 1.2.5.1.1.2.3
Rewrite the expression.
x=32⋅4
x=32⋅4
x=32⋅4
x=32⋅4
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify 32⋅4.
Step 1.2.5.2.1.1
Cancel the common factor of 2.
Step 1.2.5.2.1.1.1
Factor 2 out of 4.
x=32⋅(2(2))
Step 1.2.5.2.1.1.2
Cancel the common factor.
x=32⋅(2⋅2)
Step 1.2.5.2.1.1.3
Rewrite the expression.
x=3⋅2
x=3⋅2
Step 1.2.5.2.1.2
Multiply 3 by 2.
x=6
x=6
x=6
x=6
x=6
Step 1.3
x-intercept(s) in point form.
x-intercept(s): (6,0)
x-intercept(s): (6,0)
Step 2
Step 2.1
To find the y-intercept(s), substitute in 0 for x and solve for y.
y=23⋅(0)-4
Step 2.2
Solve the equation.
Step 2.2.1
Multiply 23 by 0.
y=23⋅0-4
Step 2.2.2
Remove parentheses.
y=23⋅(0)-4
Step 2.2.3
Simplify 23⋅(0)-4.
Step 2.2.3.1
Multiply 23 by 0.
y=0-4
Step 2.2.3.2
Subtract 4 from 0.
y=-4
y=-4
y=-4
Step 2.3
y-intercept(s) in point form.
y-intercept(s): (0,-4)
y-intercept(s): (0,-4)
Step 3
List the intersections.
x-intercept(s): (6,0)
y-intercept(s): (0,-4)
Step 4