Enter a problem...
Algebra Examples
log(2x)=3log(2x)=3
Step 1
Rewrite log(2x)=3log(2x)=3 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
103=2x103=2x
Step 2
Step 2.1
Rewrite the equation as 2x=1032x=103.
2x=1032x=103
Step 2.2
Divide each term in 2x=1032x=103 by 22 and simplify.
Step 2.2.1
Divide each term in 2x=1032x=103 by 22.
2x2=10322x2=1032
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of 22.
Step 2.2.2.1.1
Cancel the common factor.
2x2=1032
Step 2.2.2.1.2
Divide x by 1.
x=1032
x=1032
x=1032
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Raise 10 to the power of 3.
x=10002
Step 2.2.3.2
Divide 1000 by 2.
x=500
x=500
x=500
x=500