Algebra Examples

Solve Using the Quadratic Formula x(5x-2)=7
x(5x-2)=7
Step 1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 1.1
Simplify the left side.
Tap for more steps...
Step 1.1.1
Simplify x(5x-2).
Tap for more steps...
Step 1.1.1.1
Simplify by multiplying through.
Tap for more steps...
Step 1.1.1.1.1
Apply the distributive property.
x(5x)+x-2=7
Step 1.1.1.1.2
Reorder.
Tap for more steps...
Step 1.1.1.1.2.1
Rewrite using the commutative property of multiplication.
5xx+x-2=7
Step 1.1.1.1.2.2
Move -2 to the left of x.
5xx-2x=7
5xx-2x=7
5xx-2x=7
Step 1.1.1.2
Multiply x by x by adding the exponents.
Tap for more steps...
Step 1.1.1.2.1
Move x.
5(xx)-2x=7
Step 1.1.1.2.2
Multiply x by x.
5x2-2x=7
5x2-2x=7
5x2-2x=7
5x2-2x=7
Step 1.2
Subtract 7 from both sides of the equation.
5x2-2x-7=0
5x2-2x-7=0
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3
Substitute the values a=5, b=-2, and c=-7 into the quadratic formula and solve for x.
2±(-2)2-4(5-7)25
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise -2 to the power of 2.
x=2±4-45-725
Step 4.1.2
Multiply -45-7.
Tap for more steps...
Step 4.1.2.1
Multiply -4 by 5.
x=2±4-20-725
Step 4.1.2.2
Multiply -20 by -7.
x=2±4+14025
x=2±4+14025
Step 4.1.3
Add 4 and 140.
x=2±14425
Step 4.1.4
Rewrite 144 as 122.
x=2±12225
Step 4.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=2±1225
x=2±1225
Step 4.2
Multiply 2 by 5.
x=2±1210
Step 4.3
Simplify 2±1210.
x=1±65
x=1±65
Step 5
The final answer is the combination of both solutions.
x=75,-1
x(5x-2)=7
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]