Enter a problem...
Algebra Examples
2i1+i2i1+i
Step 1
Multiply the numerator and denominator of 2i1+1i2i1+1i by the conjugate of 1+1i1+1i to make the denominator real.
2i1+1i⋅1-i1-i2i1+1i⋅1−i1−i
Step 2
Step 2.1
Combine.
2i(1-i)(1+1i)(1-i)2i(1−i)(1+1i)(1−i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Apply the distributive property.
2i⋅1+2i(-i)(1+1i)(1-i)2i⋅1+2i(−i)(1+1i)(1−i)
Step 2.2.2
Multiply 22 by 11.
2i+2i(-i)(1+1i)(1-i)2i+2i(−i)(1+1i)(1−i)
Step 2.2.3
Multiply 2i(-i)2i(−i).
Step 2.2.3.1
Multiply -1−1 by 22.
2i-2ii(1+1i)(1-i)2i−2ii(1+1i)(1−i)
Step 2.2.3.2
Raise ii to the power of 11.
2i-2(i1i)(1+1i)(1-i)2i−2(i1i)(1+1i)(1−i)
Step 2.2.3.3
Raise ii to the power of 11.
2i-2(i1i1)(1+1i)(1-i)2i−2(i1i1)(1+1i)(1−i)
Step 2.2.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
2i-2i1+1(1+1i)(1-i)2i−2i1+1(1+1i)(1−i)
Step 2.2.3.5
Add 11 and 11.
2i-2i2(1+1i)(1-i)2i−2i2(1+1i)(1−i)
2i-2i2(1+1i)(1-i)2i−2i2(1+1i)(1−i)
Step 2.2.4
Simplify each term.
Step 2.2.4.1
Rewrite i2i2 as -1−1.
2i-2⋅-1(1+1i)(1-i)2i−2⋅−1(1+1i)(1−i)
Step 2.2.4.2
Multiply -2−2 by -1−1.
2i+2(1+1i)(1-i)2i+2(1+1i)(1−i)
2i+2(1+1i)(1-i)2i+2(1+1i)(1−i)
Step 2.2.5
Reorder 2i2i and 22.
2+2i(1+1i)(1-i)2+2i(1+1i)(1−i)
2+2i(1+1i)(1-i)2+2i(1+1i)(1−i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (1+1i)(1-i)(1+1i)(1−i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
2+2i1(1-i)+1i(1-i)2+2i1(1−i)+1i(1−i)
Step 2.3.1.2
Apply the distributive property.
2+2i1⋅1+1(-i)+1i(1-i)2+2i1⋅1+1(−i)+1i(1−i)
Step 2.3.1.3
Apply the distributive property.
2+2i1⋅1+1(-i)+1i⋅1+1i(-i)2+2i1⋅1+1(−i)+1i⋅1+1i(−i)
2+2i1⋅1+1(-i)+1i⋅1+1i(-i)2+2i1⋅1+1(−i)+1i⋅1+1i(−i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 11 by 11.
2+2i1+1(-i)+1i⋅1+1i(-i)2+2i1+1(−i)+1i⋅1+1i(−i)
Step 2.3.2.2
Multiply -1−1 by 11.
2+2i1-1i+1i⋅1+1i(-i)2+2i1−1i+1i⋅1+1i(−i)
Step 2.3.2.3
Multiply 11 by 11.
2+2i1-1i+1i+1i(-i)2+2i1−1i+1i+1i(−i)
Step 2.3.2.4
Multiply -1−1 by 11.
2+2i1-1i+1i-ii2+2i1−1i+1i−ii
Step 2.3.2.5
Raise ii to the power of 11.
2+2i1-1i+1i-(i1i)2+2i1−1i+1i−(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
2+2i1-1i+1i-(i1i1)2+2i1−1i+1i−(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
2+2i1-1i+1i-i1+12+2i1−1i+1i−i1+1
Step 2.3.2.8
Add 11 and 11.
2+2i1-1i+1i-i22+2i1−1i+1i−i2
Step 2.3.2.9
Add -1i−1i and 1i1i.
2+2i1+0-i22+2i1+0−i2
Step 2.3.2.10
Add 11 and 00.
2+2i1-i22+2i1−i2
2+2i1-i22+2i1−i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2i2 as -1−1.
2+2i1--12+2i1−−1
Step 2.3.3.2
Multiply -1−1 by -1−1.
2+2i1+12+2i1+1
2+2i1+12+2i1+1
Step 2.3.4
Add 11 and 11.
2+2i22+2i2
2+2i22+2i2
2+2i22+2i2
Step 3
Step 3.1
Factor 22 out of 22.
2⋅1+2i22⋅1+2i2
Step 3.2
Factor 22 out of 2i2i.
2⋅1+2(i)22⋅1+2(i)2
Step 3.3
Factor 22 out of 2(1)+2(i)2(1)+2(i).
2(1+i)22(1+i)2
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 22 out of 22.
2(1+i)2(1)2(1+i)2(1)
Step 3.4.2
Cancel the common factor.
2(1+i)2⋅1
Step 3.4.3
Rewrite the expression.
1+i1
Step 3.4.4
Divide 1+i by 1.
1+i
1+i
1+i