Enter a problem...
Algebra Examples
y=x2-4x-2y=x2−4x−2
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for x2-4x-2x2−4x−2.
Step 1.1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-4b=−4
c=-2c=−2
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-42⋅1d=−42⋅1
Step 1.1.1.3.2
Cancel the common factor of -4−4 and 22.
Step 1.1.1.3.2.1
Factor 22 out of -4−4.
d=2⋅-22⋅1d=2⋅−22⋅1
Step 1.1.1.3.2.2
Cancel the common factors.
Step 1.1.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-22(1)d=2⋅−22(1)
Step 1.1.1.3.2.2.2
Cancel the common factor.
d=2⋅-22⋅1
Step 1.1.1.3.2.2.3
Rewrite the expression.
d=-21
Step 1.1.1.3.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
Step 1.1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-2-(-4)24⋅1
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Simplify each term.
Step 1.1.1.4.2.1.1
Cancel the common factor of (-4)2 and 4.
Step 1.1.1.4.2.1.1.1
Rewrite -4 as -1(4).
e=-2-(-1(4))24⋅1
Step 1.1.1.4.2.1.1.2
Apply the product rule to -1(4).
e=-2-(-1)2⋅424⋅1
Step 1.1.1.4.2.1.1.3
Raise -1 to the power of 2.
e=-2-1⋅424⋅1
Step 1.1.1.4.2.1.1.4
Multiply 42 by 1.
e=-2-424⋅1
Step 1.1.1.4.2.1.1.5
Factor 4 out of 42.
e=-2-4⋅44⋅1
Step 1.1.1.4.2.1.1.6
Cancel the common factors.
Step 1.1.1.4.2.1.1.6.1
Factor 4 out of 4⋅1.
e=-2-4⋅44(1)
Step 1.1.1.4.2.1.1.6.2
Cancel the common factor.
e=-2-4⋅44⋅1
Step 1.1.1.4.2.1.1.6.3
Rewrite the expression.
e=-2-41
Step 1.1.1.4.2.1.1.6.4
Divide 4 by 1.
e=-2-1⋅4
e=-2-1⋅4
e=-2-1⋅4
Step 1.1.1.4.2.1.2
Multiply -1 by 4.
e=-2-4
e=-2-4
Step 1.1.1.4.2.2
Subtract 4 from -2.
e=-6
e=-6
e=-6
Step 1.1.1.5
Substitute the values of a, d, and e into the vertex form (x-2)2-6.
(x-2)2-6
(x-2)2-6
Step 1.1.2
Set y equal to the new right side.
y=(x-2)2-6
y=(x-2)2-6
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=2
k=-6
Step 1.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k).
(2,-6)
Step 1.5
Find p, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14⋅1
Step 1.5.3
Cancel the common factor of 1.
Step 1.5.3.1
Cancel the common factor.
14⋅1
Step 1.5.3.2
Rewrite the expression.
14
14
14
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(2,-234)
(2,-234)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=2
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-254
y=-254
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (2,-6)
Focus: (2,-234)
Axis of Symmetry: x=2
Directrix: y=-254
Direction: Opens Up
Vertex: (2,-6)
Focus: (2,-234)
Axis of Symmetry: x=2
Directrix: y=-254
Step 2
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=(1)2-4⋅1-2
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
One to any power is one.
f(1)=1-4⋅1-2
Step 2.2.1.2
Multiply -4 by 1.
f(1)=1-4-2
f(1)=1-4-2
Step 2.2.2
Simplify by subtracting numbers.
Step 2.2.2.1
Subtract 4 from 1.
f(1)=-3-2
Step 2.2.2.2
Subtract 2 from -3.
f(1)=-5
f(1)=-5
Step 2.2.3
The final answer is -5.
-5
-5
Step 2.3
The y value at x=1 is -5.
y=-5
Step 2.4
Replace the variable x with 0 in the expression.
f(0)=(0)2-4⋅0-2
Step 2.5
Simplify the result.
Step 2.5.1
Simplify each term.
Step 2.5.1.1
Raising 0 to any positive power yields 0.
f(0)=0-4⋅0-2
Step 2.5.1.2
Multiply -4 by 0.
f(0)=0+0-2
f(0)=0+0-2
Step 2.5.2
Simplify by adding and subtracting.
Step 2.5.2.1
Add 0 and 0.
f(0)=0-2
Step 2.5.2.2
Subtract 2 from 0.
f(0)=-2
f(0)=-2
Step 2.5.3
The final answer is -2.
-2
-2
Step 2.6
The y value at x=0 is -2.
y=-2
Step 2.7
Replace the variable x with 3 in the expression.
f(3)=(3)2-4⋅3-2
Step 2.8
Simplify the result.
Step 2.8.1
Simplify each term.
Step 2.8.1.1
Raise 3 to the power of 2.
f(3)=9-4⋅3-2
Step 2.8.1.2
Multiply -4 by 3.
f(3)=9-12-2
f(3)=9-12-2
Step 2.8.2
Simplify by subtracting numbers.
Step 2.8.2.1
Subtract 12 from 9.
f(3)=-3-2
Step 2.8.2.2
Subtract 2 from -3.
f(3)=-5
f(3)=-5
Step 2.8.3
The final answer is -5.
-5
-5
Step 2.9
The y value at x=3 is -5.
y=-5
Step 2.10
Replace the variable x with 4 in the expression.
f(4)=(4)2-4⋅4-2
Step 2.11
Simplify the result.
Step 2.11.1
Simplify each term.
Step 2.11.1.1
Raise 4 to the power of 2.
f(4)=16-4⋅4-2
Step 2.11.1.2
Multiply -4 by 4.
f(4)=16-16-2
f(4)=16-16-2
Step 2.11.2
Simplify by subtracting numbers.
Step 2.11.2.1
Subtract 16 from 16.
f(4)=0-2
Step 2.11.2.2
Subtract 2 from 0.
f(4)=-2
f(4)=-2
Step 2.11.3
The final answer is -2.
-2
-2
Step 2.12
The y value at x=4 is -2.
y=-2
Step 2.13
Graph the parabola using its properties and the selected points.
xy0-21-52-63-54-2
xy0-21-52-63-54-2
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (2,-6)
Focus: (2,-234)
Axis of Symmetry: x=2
Directrix: y=-254
xy0-21-52-63-54-2
Step 4