Algebra Examples

Solve Using the Quadratic Formula x^2+6x-6=10
x2+6x-6=10x2+6x6=10
Step 1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 1.1
Subtract 1010 from both sides of the equation.
x2+6x-6-10=0x2+6x610=0
Step 1.2
Subtract 1010 from -66.
x2+6x-16=0x2+6x16=0
x2+6x-16=0x2+6x16=0
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 3
Substitute the values a=1a=1, b=6b=6, and c=-16c=16 into the quadratic formula and solve for xx.
-6±62-4(1-16)216±624(116)21
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 66 to the power of 22.
x=-6±36-41-1621x=6±36411621
Step 4.1.2
Multiply -41-164116.
Tap for more steps...
Step 4.1.2.1
Multiply -44 by 11.
x=-6±36-4-1621x=6±3641621
Step 4.1.2.2
Multiply -44 by -1616.
x=-6±36+6421x=6±36+6421
x=-6±36+6421x=6±36+6421
Step 4.1.3
Add 3636 and 6464.
x=-6±10021x=6±10021
Step 4.1.4
Rewrite 100100 as 102102.
x=-6±10221x=6±10221
Step 4.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=-6±1021x=6±1021
x=-6±1021x=6±1021
Step 4.2
Multiply 22 by 11.
x=-6±102x=6±102
Step 4.3
Simplify -6±1026±102.
x=-3±5x=3±5
x=-3±5x=3±5
Step 5
The final answer is the combination of both solutions.
x=2,-8x=2,8
 [x2  12  π  xdx ]  x2  12  π  xdx