Enter a problem...
Algebra Examples
x2+6x-6=10x2+6x−6=10
Step 1
Step 1.1
Subtract 1010 from both sides of the equation.
x2+6x-6-10=0x2+6x−6−10=0
Step 1.2
Subtract 1010 from -6−6.
x2+6x-16=0x2+6x−16=0
x2+6x-16=0x2+6x−16=0
Step 2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 3
Substitute the values a=1a=1, b=6b=6, and c=-16c=−16 into the quadratic formula and solve for xx.
-6±√62-4⋅(1⋅-16)2⋅1−6±√62−4⋅(1⋅−16)2⋅1
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise 66 to the power of 22.
x=-6±√36-4⋅1⋅-162⋅1x=−6±√36−4⋅1⋅−162⋅1
Step 4.1.2
Multiply -4⋅1⋅-16−4⋅1⋅−16.
Step 4.1.2.1
Multiply -4−4 by 11.
x=-6±√36-4⋅-162⋅1x=−6±√36−4⋅−162⋅1
Step 4.1.2.2
Multiply -4−4 by -16−16.
x=-6±√36+642⋅1x=−6±√36+642⋅1
x=-6±√36+642⋅1x=−6±√36+642⋅1
Step 4.1.3
Add 3636 and 6464.
x=-6±√1002⋅1x=−6±√1002⋅1
Step 4.1.4
Rewrite 100100 as 102102.
x=-6±√1022⋅1x=−6±√1022⋅1
Step 4.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=-6±102⋅1x=−6±102⋅1
x=-6±102⋅1x=−6±102⋅1
Step 4.2
Multiply 22 by 11.
x=-6±102x=−6±102
Step 4.3
Simplify -6±102−6±102.
x=-3±5x=−3±5
x=-3±5x=−3±5
Step 5
The final answer is the combination of both solutions.
x=2,-8x=2,−8