Enter a problem...
Algebra Examples
y=(x-1)(x-4)y=(x−1)(x−4)
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for (x-1)(x-4)(x−1)(x−4).
Step 1.1.1.1
Simplify the expression.
Step 1.1.1.1.1
Expand (x-1)(x-4)(x−1)(x−4) using the FOIL Method.
Step 1.1.1.1.1.1
Apply the distributive property.
x(x-4)-1(x-4)x(x−4)−1(x−4)
Step 1.1.1.1.1.2
Apply the distributive property.
x⋅x+x⋅-4-1(x-4)x⋅x+x⋅−4−1(x−4)
Step 1.1.1.1.1.3
Apply the distributive property.
x⋅x+x⋅-4-1x-1⋅-4x⋅x+x⋅−4−1x−1⋅−4
x⋅x+x⋅-4-1x-1⋅-4x⋅x+x⋅−4−1x−1⋅−4
Step 1.1.1.1.2
Simplify and combine like terms.
Step 1.1.1.1.2.1
Simplify each term.
Step 1.1.1.1.2.1.1
Multiply xx by xx.
x2+x⋅-4-1x-1⋅-4x2+x⋅−4−1x−1⋅−4
Step 1.1.1.1.2.1.2
Move -4−4 to the left of xx.
x2-4⋅x-1x-1⋅-4x2−4⋅x−1x−1⋅−4
Step 1.1.1.1.2.1.3
Rewrite -1x−1x as -x−x.
x2-4x-x-1⋅-4x2−4x−x−1⋅−4
Step 1.1.1.1.2.1.4
Multiply -1−1 by -4−4.
x2-4x-x+4x2−4x−x+4
x2-4x-x+4x2−4x−x+4
Step 1.1.1.1.2.2
Subtract xx from -4x−4x.
x2-5x+4x2−5x+4
x2-5x+4x2−5x+4
x2-5x+4x2−5x+4
Step 1.1.1.2
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-5b=−5
c=4c=4
Step 1.1.1.3
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.4
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.1.4.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-52⋅1d=−52⋅1
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Multiply 22 by 11.
d=-52d=−52
Step 1.1.1.4.2.2
Move the negative in front of the fraction.
d=-52d=−52
d=-52d=−52
d=-52d=−52
Step 1.1.1.5
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 1.1.1.5.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=4-(-5)24⋅1e=4−(−5)24⋅1
Step 1.1.1.5.2
Simplify the right side.
Step 1.1.1.5.2.1
Simplify each term.
Step 1.1.1.5.2.1.1
Raise -5−5 to the power of 22.
e=4-254⋅1e=4−254⋅1
Step 1.1.1.5.2.1.2
Multiply 44 by 11.
e=4-254e=4−254
e=4-254e=4−254
Step 1.1.1.5.2.2
To write 44 as a fraction with a common denominator, multiply by 4444.
e=4⋅44-254e=4⋅44−254
Step 1.1.1.5.2.3
Combine 44 and 4444.
e=4⋅44-254e=4⋅44−254
Step 1.1.1.5.2.4
Combine the numerators over the common denominator.
e=4⋅4-254e=4⋅4−254
Step 1.1.1.5.2.5
Simplify the numerator.
Step 1.1.1.5.2.5.1
Multiply 44 by 44.
e=16-254e=16−254
Step 1.1.1.5.2.5.2
Subtract 2525 from 1616.
e=-94e=−94
e=-94e=−94
Step 1.1.1.5.2.6
Move the negative in front of the fraction.
e=-94e=−94
e=-94e=−94
e=-94e=−94
Step 1.1.1.6
Substitute the values of aa, dd, and ee into the vertex form (x-52)2-94(x−52)2−94.
(x-52)2-94(x−52)2−94
(x-52)2-94(x−52)2−94
Step 1.1.2
Set yy equal to the new right side.
y=(x-52)2-94y=(x−52)2−94
y=(x-52)2-94y=(x−52)2−94
Step 1.2
Use the vertex form, y=a(x-h)2+ky=a(x−h)2+k, to determine the values of aa, hh, and kk.
a=1a=1
h=52h=52
k=-94k=−94
Step 1.3
Since the value of aa is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k)(h,k).
(52,-94)(52,−94)
Step 1.5
Find pp, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a14a
Step 1.5.2
Substitute the value of aa into the formula.
14⋅114⋅1
Step 1.5.3
Cancel the common factor of 11.
Step 1.5.3.1
Cancel the common factor.
14⋅1
Step 1.5.3.2
Rewrite the expression.
14
14
14
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(52,-2)
(52,-2)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=52
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-52
y=-52
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
Step 2
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=((1)-1)((1)-4)
Step 2.2
Simplify the result.
Step 2.2.1
Subtract 1 from 1.
f(1)=0((1)-4)
Step 2.2.2
Subtract 4 from 1.
f(1)=0⋅-3
Step 2.2.3
Multiply 0 by -3.
f(1)=0
Step 2.2.4
The final answer is 0.
0
0
Step 2.3
The y value at x=1 is 0.
y=0
Step 2.4
Replace the variable x with 0 in the expression.
f(0)=((0)-1)((0)-4)
Step 2.5
Simplify the result.
Step 2.5.1
Subtract 1 from 0.
f(0)=-1((0)-4)
Step 2.5.2
Subtract 4 from 0.
f(0)=-1⋅-4
Step 2.5.3
Multiply -1 by -4.
f(0)=4
Step 2.5.4
The final answer is 4.
4
4
Step 2.6
The y value at x=0 is 4.
y=4
Step 2.7
Replace the variable x with 3 in the expression.
f(3)=((3)-1)((3)-4)
Step 2.8
Simplify the result.
Step 2.8.1
Subtract 1 from 3.
f(3)=2((3)-4)
Step 2.8.2
Subtract 4 from 3.
f(3)=2⋅-1
Step 2.8.3
Multiply 2 by -1.
f(3)=-2
Step 2.8.4
The final answer is -2.
-2
-2
Step 2.9
The y value at x=3 is -2.
y=-2
Step 2.10
Replace the variable x with 4 in the expression.
f(4)=((4)-1)((4)-4)
Step 2.11
Simplify the result.
Step 2.11.1
Subtract 1 from 4.
f(4)=3((4)-4)
Step 2.11.2
Subtract 4 from 4.
f(4)=3⋅0
Step 2.11.3
Multiply 3 by 0.
f(4)=0
Step 2.11.4
The final answer is 0.
0
0
Step 2.12
The y value at x=4 is 0.
y=0
Step 2.13
Graph the parabola using its properties and the selected points.
xy041052-943-240
xy041052-943-240
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
xy041052-943-240
Step 4
