Algebra Examples

Graph y=(x-1)(x-4)
y=(x-1)(x-4)y=(x1)(x4)
Step 1
Find the properties of the given parabola.
Tap for more steps...
Step 1.1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1.1
Complete the square for (x-1)(x-4)(x1)(x4).
Tap for more steps...
Step 1.1.1.1
Simplify the expression.
Tap for more steps...
Step 1.1.1.1.1
Expand (x-1)(x-4)(x1)(x4) using the FOIL Method.
Tap for more steps...
Step 1.1.1.1.1.1
Apply the distributive property.
x(x-4)-1(x-4)x(x4)1(x4)
Step 1.1.1.1.1.2
Apply the distributive property.
xx+x-4-1(x-4)xx+x41(x4)
Step 1.1.1.1.1.3
Apply the distributive property.
xx+x-4-1x-1-4xx+x41x14
xx+x-4-1x-1-4xx+x41x14
Step 1.1.1.1.2
Simplify and combine like terms.
Tap for more steps...
Step 1.1.1.1.2.1
Simplify each term.
Tap for more steps...
Step 1.1.1.1.2.1.1
Multiply xx by xx.
x2+x-4-1x-1-4x2+x41x14
Step 1.1.1.1.2.1.2
Move -44 to the left of xx.
x2-4x-1x-1-4x24x1x14
Step 1.1.1.1.2.1.3
Rewrite -1x1x as -xx.
x2-4x-x-1-4x24xx14
Step 1.1.1.1.2.1.4
Multiply -11 by -44.
x2-4x-x+4x24xx+4
x2-4x-x+4x24xx+4
Step 1.1.1.1.2.2
Subtract xx from -4x4x.
x2-5x+4x25x+4
x2-5x+4x25x+4
x2-5x+4x25x+4
Step 1.1.1.2
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-5b=5
c=4c=4
Step 1.1.1.3
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.4
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.1.1.4.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-521d=521
Step 1.1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.1.4.2.1
Multiply 22 by 11.
d=-52d=52
Step 1.1.1.4.2.2
Move the negative in front of the fraction.
d=-52d=52
d=-52d=52
d=-52d=52
Step 1.1.1.5
Find the value of ee using the formula e=c-b24ae=cb24a.
Tap for more steps...
Step 1.1.1.5.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=cb24a.
e=4-(-5)241e=4(5)241
Step 1.1.1.5.2
Simplify the right side.
Tap for more steps...
Step 1.1.1.5.2.1
Simplify each term.
Tap for more steps...
Step 1.1.1.5.2.1.1
Raise -55 to the power of 22.
e=4-2541e=42541
Step 1.1.1.5.2.1.2
Multiply 44 by 11.
e=4-254e=4254
e=4-254e=4254
Step 1.1.1.5.2.2
To write 44 as a fraction with a common denominator, multiply by 4444.
e=444-254e=444254
Step 1.1.1.5.2.3
Combine 44 and 4444.
e=444-254e=444254
Step 1.1.1.5.2.4
Combine the numerators over the common denominator.
e=44-254e=44254
Step 1.1.1.5.2.5
Simplify the numerator.
Tap for more steps...
Step 1.1.1.5.2.5.1
Multiply 44 by 44.
e=16-254e=16254
Step 1.1.1.5.2.5.2
Subtract 2525 from 1616.
e=-94e=94
e=-94e=94
Step 1.1.1.5.2.6
Move the negative in front of the fraction.
e=-94e=94
e=-94e=94
e=-94e=94
Step 1.1.1.6
Substitute the values of aa, dd, and ee into the vertex form (x-52)2-94(x52)294.
(x-52)2-94(x52)294
(x-52)2-94(x52)294
Step 1.1.2
Set yy equal to the new right side.
y=(x-52)2-94y=(x52)294
y=(x-52)2-94y=(x52)294
Step 1.2
Use the vertex form, y=a(x-h)2+ky=a(xh)2+k, to determine the values of aa, hh, and kk.
a=1a=1
h=52h=52
k=-94k=94
Step 1.3
Since the value of aa is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k)(h,k).
(52,-94)(52,94)
Step 1.5
Find pp, the distance from the vertex to the focus.
Tap for more steps...
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a14a
Step 1.5.2
Substitute the value of aa into the formula.
141141
Step 1.5.3
Cancel the common factor of 11.
Tap for more steps...
Step 1.5.3.1
Cancel the common factor.
141
Step 1.5.3.2
Rewrite the expression.
14
14
14
Step 1.6
Find the focus.
Tap for more steps...
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(52,-2)
(52,-2)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=52
Step 1.8
Find the directrix.
Tap for more steps...
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-52
y=-52
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
Step 2
Select a few x values, and plug them into the equation to find the corresponding y values. The x values should be selected around the vertex.
Tap for more steps...
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=((1)-1)((1)-4)
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Subtract 1 from 1.
f(1)=0((1)-4)
Step 2.2.2
Subtract 4 from 1.
f(1)=0-3
Step 2.2.3
Multiply 0 by -3.
f(1)=0
Step 2.2.4
The final answer is 0.
0
0
Step 2.3
The y value at x=1 is 0.
y=0
Step 2.4
Replace the variable x with 0 in the expression.
f(0)=((0)-1)((0)-4)
Step 2.5
Simplify the result.
Tap for more steps...
Step 2.5.1
Subtract 1 from 0.
f(0)=-1((0)-4)
Step 2.5.2
Subtract 4 from 0.
f(0)=-1-4
Step 2.5.3
Multiply -1 by -4.
f(0)=4
Step 2.5.4
The final answer is 4.
4
4
Step 2.6
The y value at x=0 is 4.
y=4
Step 2.7
Replace the variable x with 3 in the expression.
f(3)=((3)-1)((3)-4)
Step 2.8
Simplify the result.
Tap for more steps...
Step 2.8.1
Subtract 1 from 3.
f(3)=2((3)-4)
Step 2.8.2
Subtract 4 from 3.
f(3)=2-1
Step 2.8.3
Multiply 2 by -1.
f(3)=-2
Step 2.8.4
The final answer is -2.
-2
-2
Step 2.9
The y value at x=3 is -2.
y=-2
Step 2.10
Replace the variable x with 4 in the expression.
f(4)=((4)-1)((4)-4)
Step 2.11
Simplify the result.
Tap for more steps...
Step 2.11.1
Subtract 1 from 4.
f(4)=3((4)-4)
Step 2.11.2
Subtract 4 from 4.
f(4)=30
Step 2.11.3
Multiply 3 by 0.
f(4)=0
Step 2.11.4
The final answer is 0.
0
0
Step 2.12
The y value at x=4 is 0.
y=0
Step 2.13
Graph the parabola using its properties and the selected points.
xy041052-943-240
xy041052-943-240
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
xy041052-943-240
Step 4
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]