Enter a problem...
Algebra Examples
-4(3-2x)+2x=2x-8−4(3−2x)+2x=2x−8
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
-4⋅3-4(-2x)+2x=2x-8−4⋅3−4(−2x)+2x=2x−8
Step 1.1.2
Multiply -4−4 by 33.
-12-4(-2x)+2x=2x-8−12−4(−2x)+2x=2x−8
Step 1.1.3
Multiply -2−2 by -4−4.
-12+8x+2x=2x-8−12+8x+2x=2x−8
-12+8x+2x=2x-8−12+8x+2x=2x−8
Step 1.2
Add 8x8x and 2x2x.
-12+10x=2x-8−12+10x=2x−8
-12+10x=2x-8−12+10x=2x−8
Step 2
Step 2.1
Subtract 2x2x from both sides of the equation.
-12+10x-2x=-8−12+10x−2x=−8
Step 2.2
Subtract 2x2x from 10x10x.
-12+8x=-8−12+8x=−8
-12+8x=-8−12+8x=−8
Step 3
Step 3.1
Add 1212 to both sides of the equation.
8x=-8+128x=−8+12
Step 3.2
Add -8−8 and 1212.
8x=48x=4
8x=48x=4
Step 4
Step 4.1
Divide each term in 8x=48x=4 by 88.
8x8=488x8=48
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of 88.
Step 4.2.1.1
Cancel the common factor.
8x8=48
Step 4.2.1.2
Divide x by 1.
x=48
x=48
x=48
Step 4.3
Simplify the right side.
Step 4.3.1
Cancel the common factor of 4 and 8.
Step 4.3.1.1
Factor 4 out of 4.
x=4(1)8
Step 4.3.1.2
Cancel the common factors.
Step 4.3.1.2.1
Factor 4 out of 8.
x=4⋅14⋅2
Step 4.3.1.2.2
Cancel the common factor.
x=4⋅14⋅2
Step 4.3.1.2.3
Rewrite the expression.
x=12
x=12
x=12
x=12
x=12
Step 5
The result can be shown in multiple forms.
Exact Form:
x=12
Decimal Form:
x=0.5