Enter a problem...
Algebra Examples
x2+x3=5x2+x3=5
Step 1
Step 1.1
To write x2x2 as a fraction with a common denominator, multiply by 3333.
x2⋅33+x3=5x2⋅33+x3=5
Step 1.2
To write x3x3 as a fraction with a common denominator, multiply by 2222.
x2⋅33+x3⋅22=5x2⋅33+x3⋅22=5
Step 1.3
Write each expression with a common denominator of 66, by multiplying each by an appropriate factor of 11.
Step 1.3.1
Multiply x2x2 by 3333.
x⋅32⋅3+x3⋅22=5x⋅32⋅3+x3⋅22=5
Step 1.3.2
Multiply 22 by 33.
x⋅36+x3⋅22=5x⋅36+x3⋅22=5
Step 1.3.3
Multiply x3x3 by 2222.
x⋅36+x⋅23⋅2=5x⋅36+x⋅23⋅2=5
Step 1.3.4
Multiply 33 by 22.
x⋅36+x⋅26=5x⋅36+x⋅26=5
x⋅36+x⋅26=5x⋅36+x⋅26=5
Step 1.4
Combine the numerators over the common denominator.
x⋅3+x⋅26=5x⋅3+x⋅26=5
Step 1.5
Simplify the numerator.
Step 1.5.1
Move 33 to the left of xx.
3⋅x+x⋅26=53⋅x+x⋅26=5
Step 1.5.2
Move 22 to the left of xx.
3x+2⋅x6=53x+2⋅x6=5
Step 1.5.3
Add 3x3x and 2x2x.
5x6=55x6=5
5x6=55x6=5
5x6=55x6=5
Step 2
Multiply both sides of the equation by 6565.
65⋅5x6=65⋅565⋅5x6=65⋅5
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify 65⋅5x665⋅5x6.
Step 3.1.1.1
Cancel the common factor of 66.
Step 3.1.1.1.1
Cancel the common factor.
65⋅5x6=65⋅5
Step 3.1.1.1.2
Rewrite the expression.
15(5x)=65⋅5
15(5x)=65⋅5
Step 3.1.1.2
Cancel the common factor of 5.
Step 3.1.1.2.1
Factor 5 out of 5x.
15(5(x))=65⋅5
Step 3.1.1.2.2
Cancel the common factor.
15(5x)=65⋅5
Step 3.1.1.2.3
Rewrite the expression.
x=65⋅5
x=65⋅5
x=65⋅5
x=65⋅5
Step 3.2
Simplify the right side.
Step 3.2.1
Cancel the common factor of 5.
Step 3.2.1.1
Cancel the common factor.
x=65⋅5
Step 3.2.1.2
Rewrite the expression.
x=6
x=6
x=6
x=6