Enter a problem...
Algebra Examples
(3x-y)3(3x−y)3
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an-kbk)(a+b)n=n∑k=0nCk⋅(an−kbk).
3∑k=03!(3-k)!k!⋅(3x)3-k⋅(-y)k3∑k=03!(3−k)!k!⋅(3x)3−k⋅(−y)k
Step 2
Expand the summation.
3!(3-0)!0!⋅(3x)3-0⋅(-y)0+3!(3-1)!1!⋅(3x)3-1⋅(-y)1+3!(3-2)!2!⋅(3x)3-2⋅(-y)2+3!(3-3)!3!⋅(3x)3-3⋅(-y)33!(3−0)!0!⋅(3x)3−0⋅(−y)0+3!(3−1)!1!⋅(3x)3−1⋅(−y)1+3!(3−2)!2!⋅(3x)3−2⋅(−y)2+3!(3−3)!3!⋅(3x)3−3⋅(−y)3
Step 3
Simplify the exponents for each term of the expansion.
1⋅(3x)3⋅(-y)0+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)31⋅(3x)3⋅(−y)0+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4
Step 4.1
Multiply (3x)3(3x)3 by 11.
(3x)3⋅(-y)0+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)3(3x)3⋅(−y)0+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.2
Apply the product rule to 3x3x.
33x3⋅(-y)0+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)333x3⋅(−y)0+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.3
Raise 33 to the power of 33.
27x3⋅(-y)0+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3⋅(−y)0+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.4
Apply the product rule to -y−y.
27x3⋅((-1)0y0)+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3⋅((−1)0y0)+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.5
Rewrite using the commutative property of multiplication.
27⋅(-1)0x3y0+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327⋅(−1)0x3y0+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.6
Anything raised to 00 is 11.
27⋅1x3y0+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327⋅1x3y0+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.7
Multiply 2727 by 11.
27x3y0+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3y0+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.8
Anything raised to 00 is 11.
27x3⋅1+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3⋅1+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.9
Multiply 2727 by 11.
27x3+3⋅(3x)2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+3⋅(3x)2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.10
Apply the product rule to 3x3x.
27x3+3⋅(32x2)⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+3⋅(32x2)⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.11
Multiply 33 by 3232 by adding the exponents.
Step 4.11.1
Move 3232.
27x3+32⋅3⋅x2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+32⋅3⋅x2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.11.2
Multiply 3232 by 33.
Step 4.11.2.1
Raise 33 to the power of 11.
27x3+32⋅31⋅x2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+32⋅31⋅x2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.11.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
27x3+32+1⋅x2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+32+1⋅x2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
27x3+32+1⋅x2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+32+1⋅x2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.11.3
Add 22 and 11.
27x3+33⋅x2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+33⋅x2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
27x3+33⋅x2⋅(-y)1+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+33⋅x2⋅(−y)1+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.12
Simplify 33⋅x2⋅(-y)133⋅x2⋅(−y)1.
27x3+33⋅x2⋅(-y)+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+33⋅x2⋅(−y)+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.13
Rewrite using the commutative property of multiplication.
27x3+33⋅-1x2y+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+33⋅−1x2y+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.14
Raise 33 to the power of 33.
27x3+27⋅-1x2y+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3+27⋅−1x2y+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.15
Multiply 2727 by -1−1.
27x3-27x2y+3⋅(3x)1⋅(-y)2+1⋅(3x)0⋅(-y)327x3−27x2y+3⋅(3x)1⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.16
Simplify.
27x3-27x2y+3⋅(3x)⋅(-y)2+1⋅(3x)0⋅(-y)327x3−27x2y+3⋅(3x)⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.17
Multiply 33 by 33.
27x3-27x2y+9x⋅(-y)2+1⋅(3x)0⋅(-y)327x3−27x2y+9x⋅(−y)2+1⋅(3x)0⋅(−y)3
Step 4.18
Apply the product rule to -y−y.
27x3-27x2y+9x⋅((-1)2y2)+1⋅(3x)0⋅(-y)327x3−27x2y+9x⋅((−1)2y2)+1⋅(3x)0⋅(−y)3
Step 4.19
Rewrite using the commutative property of multiplication.
27x3-27x2y+9⋅(-1)2xy2+1⋅(3x)0⋅(-y)327x3−27x2y+9⋅(−1)2xy2+1⋅(3x)0⋅(−y)3
Step 4.20
Raise -1−1 to the power of 22.
27x3-27x2y+9⋅1xy2+1⋅(3x)0⋅(-y)327x3−27x2y+9⋅1xy2+1⋅(3x)0⋅(−y)3
Step 4.21
Multiply 99 by 11.
27x3-27x2y+9xy2+1⋅(3x)0⋅(-y)327x3−27x2y+9xy2+1⋅(3x)0⋅(−y)3
Step 4.22
Multiply (3x)0(3x)0 by 11.
27x3-27x2y+9xy2+(3x)0⋅(-y)327x3−27x2y+9xy2+(3x)0⋅(−y)3
Step 4.23
Apply the product rule to 3x3x.
27x3-27x2y+9xy2+30x0⋅(-y)327x3−27x2y+9xy2+30x0⋅(−y)3
Step 4.24
Anything raised to 0 is 1.
27x3-27x2y+9xy2+1x0⋅(-y)3
Step 4.25
Multiply x0 by 1.
27x3-27x2y+9xy2+x0⋅(-y)3
Step 4.26
Anything raised to 0 is 1.
27x3-27x2y+9xy2+1⋅(-y)3
Step 4.27
Multiply (-y)3 by 1.
27x3-27x2y+9xy2+(-y)3
Step 4.28
Apply the product rule to -y.
27x3-27x2y+9xy2+(-1)3y3
Step 4.29
Raise -1 to the power of 3.
27x3-27x2y+9xy2-y3
27x3-27x2y+9xy2-y3