Algebra Examples

Expand Using the Binomial Theorem (3x-y)^3
(3x-y)3(3xy)3
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=nk=0nCk(an-kbk)(a+b)n=nk=0nCk(ankbk).
3k=03!(3-k)!k!(3x)3-k(-y)k3k=03!(3k)!k!(3x)3k(y)k
Step 2
Expand the summation.
3!(3-0)!0!(3x)3-0(-y)0+3!(3-1)!1!(3x)3-1(-y)1+3!(3-2)!2!(3x)3-2(-y)2+3!(3-3)!3!(3x)3-3(-y)33!(30)!0!(3x)30(y)0+3!(31)!1!(3x)31(y)1+3!(32)!2!(3x)32(y)2+3!(33)!3!(3x)33(y)3
Step 3
Simplify the exponents for each term of the expansion.
1(3x)3(-y)0+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)31(3x)3(y)0+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (3x)3(3x)3 by 11.
(3x)3(-y)0+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)3(3x)3(y)0+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.2
Apply the product rule to 3x3x.
33x3(-y)0+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)333x3(y)0+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.3
Raise 33 to the power of 33.
27x3(-y)0+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3(y)0+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.4
Apply the product rule to -yy.
27x3((-1)0y0)+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3((1)0y0)+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.5
Rewrite using the commutative property of multiplication.
27(-1)0x3y0+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327(1)0x3y0+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.6
Anything raised to 00 is 11.
271x3y0+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)3271x3y0+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.7
Multiply 2727 by 11.
27x3y0+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3y0+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.8
Anything raised to 00 is 11.
27x31+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x31+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.9
Multiply 2727 by 11.
27x3+3(3x)2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+3(3x)2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.10
Apply the product rule to 3x3x.
27x3+3(32x2)(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+3(32x2)(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.11
Multiply 33 by 3232 by adding the exponents.
Tap for more steps...
Step 4.11.1
Move 3232.
27x3+323x2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+323x2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.11.2
Multiply 3232 by 33.
Tap for more steps...
Step 4.11.2.1
Raise 33 to the power of 11.
27x3+3231x2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+3231x2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.11.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
27x3+32+1x2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+32+1x2(y)1+3(3x)1(y)2+1(3x)0(y)3
27x3+32+1x2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+32+1x2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.11.3
Add 22 and 11.
27x3+33x2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+33x2(y)1+3(3x)1(y)2+1(3x)0(y)3
27x3+33x2(-y)1+3(3x)1(-y)2+1(3x)0(-y)327x3+33x2(y)1+3(3x)1(y)2+1(3x)0(y)3
Step 4.12
Simplify 33x2(-y)133x2(y)1.
27x3+33x2(-y)+3(3x)1(-y)2+1(3x)0(-y)327x3+33x2(y)+3(3x)1(y)2+1(3x)0(y)3
Step 4.13
Rewrite using the commutative property of multiplication.
27x3+33-1x2y+3(3x)1(-y)2+1(3x)0(-y)327x3+331x2y+3(3x)1(y)2+1(3x)0(y)3
Step 4.14
Raise 33 to the power of 33.
27x3+27-1x2y+3(3x)1(-y)2+1(3x)0(-y)327x3+271x2y+3(3x)1(y)2+1(3x)0(y)3
Step 4.15
Multiply 2727 by -11.
27x3-27x2y+3(3x)1(-y)2+1(3x)0(-y)327x327x2y+3(3x)1(y)2+1(3x)0(y)3
Step 4.16
Simplify.
27x3-27x2y+3(3x)(-y)2+1(3x)0(-y)327x327x2y+3(3x)(y)2+1(3x)0(y)3
Step 4.17
Multiply 33 by 33.
27x3-27x2y+9x(-y)2+1(3x)0(-y)327x327x2y+9x(y)2+1(3x)0(y)3
Step 4.18
Apply the product rule to -yy.
27x3-27x2y+9x((-1)2y2)+1(3x)0(-y)327x327x2y+9x((1)2y2)+1(3x)0(y)3
Step 4.19
Rewrite using the commutative property of multiplication.
27x3-27x2y+9(-1)2xy2+1(3x)0(-y)327x327x2y+9(1)2xy2+1(3x)0(y)3
Step 4.20
Raise -11 to the power of 22.
27x3-27x2y+91xy2+1(3x)0(-y)327x327x2y+91xy2+1(3x)0(y)3
Step 4.21
Multiply 99 by 11.
27x3-27x2y+9xy2+1(3x)0(-y)327x327x2y+9xy2+1(3x)0(y)3
Step 4.22
Multiply (3x)0(3x)0 by 11.
27x3-27x2y+9xy2+(3x)0(-y)327x327x2y+9xy2+(3x)0(y)3
Step 4.23
Apply the product rule to 3x3x.
27x3-27x2y+9xy2+30x0(-y)327x327x2y+9xy2+30x0(y)3
Step 4.24
Anything raised to 0 is 1.
27x3-27x2y+9xy2+1x0(-y)3
Step 4.25
Multiply x0 by 1.
27x3-27x2y+9xy2+x0(-y)3
Step 4.26
Anything raised to 0 is 1.
27x3-27x2y+9xy2+1(-y)3
Step 4.27
Multiply (-y)3 by 1.
27x3-27x2y+9xy2+(-y)3
Step 4.28
Apply the product rule to -y.
27x3-27x2y+9xy2+(-1)3y3
Step 4.29
Raise -1 to the power of 3.
27x3-27x2y+9xy2-y3
27x3-27x2y+9xy2-y3
 [x2  12  π  xdx ]