Algebra Examples

Solve by Factoring x^2+4x+1=0
x2+4x+1=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2
Substitute the values a=1, b=4, and c=1 into the quadratic formula and solve for x.
-4±42-4(11)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise 4 to the power of 2.
x=-4±16-41121
Step 3.1.2
Multiply -411.
Tap for more steps...
Step 3.1.2.1
Multiply -4 by 1.
x=-4±16-4121
Step 3.1.2.2
Multiply -4 by 1.
x=-4±16-421
x=-4±16-421
Step 3.1.3
Subtract 4 from 16.
x=-4±1221
Step 3.1.4
Rewrite 12 as 223.
Tap for more steps...
Step 3.1.4.1
Factor 4 out of 12.
x=-4±4(3)21
Step 3.1.4.2
Rewrite 4 as 22.
x=-4±22321
x=-4±22321
Step 3.1.5
Pull terms out from under the radical.
x=-4±2321
x=-4±2321
Step 3.2
Multiply 2 by 1.
x=-4±232
Step 3.3
Simplify -4±232.
x=-2±3
x=-2±3
Step 4
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 4 to the power of 2.
x=-4±16-41121
Step 4.1.2
Multiply -411.
Tap for more steps...
Step 4.1.2.1
Multiply -4 by 1.
x=-4±16-4121
Step 4.1.2.2
Multiply -4 by 1.
x=-4±16-421
x=-4±16-421
Step 4.1.3
Subtract 4 from 16.
x=-4±1221
Step 4.1.4
Rewrite 12 as 223.
Tap for more steps...
Step 4.1.4.1
Factor 4 out of 12.
x=-4±4(3)21
Step 4.1.4.2
Rewrite 4 as 22.
x=-4±22321
x=-4±22321
Step 4.1.5
Pull terms out from under the radical.
x=-4±2321
x=-4±2321
Step 4.2
Multiply 2 by 1.
x=-4±232
Step 4.3
Simplify -4±232.
x=-2±3
Step 4.4
Change the ± to +.
x=-2+3
x=-2+3
Step 5
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise 4 to the power of 2.
x=-4±16-41121
Step 5.1.2
Multiply -411.
Tap for more steps...
Step 5.1.2.1
Multiply -4 by 1.
x=-4±16-4121
Step 5.1.2.2
Multiply -4 by 1.
x=-4±16-421
x=-4±16-421
Step 5.1.3
Subtract 4 from 16.
x=-4±1221
Step 5.1.4
Rewrite 12 as 223.
Tap for more steps...
Step 5.1.4.1
Factor 4 out of 12.
x=-4±4(3)21
Step 5.1.4.2
Rewrite 4 as 22.
x=-4±22321
x=-4±22321
Step 5.1.5
Pull terms out from under the radical.
x=-4±2321
x=-4±2321
Step 5.2
Multiply 2 by 1.
x=-4±232
Step 5.3
Simplify -4±232.
x=-2±3
Step 5.4
Change the ± to -.
x=-2-3
x=-2-3
Step 6
The final answer is the combination of both solutions.
x=-2+3,-2-3
Step 7
The result can be shown in multiple forms.
Exact Form:
x=-2+3,-2-3
Decimal Form:
x=-0.26794919,-3.73205080
x2+4x+1=0
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]