Enter a problem...
Algebra Examples
12i1+i12i1+i
Step 1
Multiply the numerator and denominator of 12i1+1i12i1+1i by the conjugate of 1+1i1+1i to make the denominator real.
12i1+1i⋅1-i1-i12i1+1i⋅1−i1−i
Step 2
Step 2.1
Combine.
12i(1-i)(1+1i)(1-i)12i(1−i)(1+1i)(1−i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Apply the distributive property.
12i⋅1+12i(-i)(1+1i)(1-i)12i⋅1+12i(−i)(1+1i)(1−i)
Step 2.2.2
Multiply 1212 by 11.
12i+12i(-i)(1+1i)(1-i)12i+12i(−i)(1+1i)(1−i)
Step 2.2.3
Multiply 12i(-i)12i(−i).
Step 2.2.3.1
Multiply -1−1 by 1212.
12i-12ii(1+1i)(1-i)12i−12ii(1+1i)(1−i)
Step 2.2.3.2
Raise ii to the power of 11.
12i-12(i1i)(1+1i)(1-i)12i−12(i1i)(1+1i)(1−i)
Step 2.2.3.3
Raise ii to the power of 11.
12i-12(i1i1)(1+1i)(1-i)12i−12(i1i1)(1+1i)(1−i)
Step 2.2.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
12i-12i1+1(1+1i)(1-i)12i−12i1+1(1+1i)(1−i)
Step 2.2.3.5
Add 11 and 11.
12i-12i2(1+1i)(1-i)12i−12i2(1+1i)(1−i)
12i-12i2(1+1i)(1-i)12i−12i2(1+1i)(1−i)
Step 2.2.4
Simplify each term.
Step 2.2.4.1
Rewrite i2i2 as -1−1.
12i-12⋅-1(1+1i)(1-i)12i−12⋅−1(1+1i)(1−i)
Step 2.2.4.2
Multiply -12−12 by -1−1.
12i+12(1+1i)(1-i)12i+12(1+1i)(1−i)
12i+12(1+1i)(1-i)12i+12(1+1i)(1−i)
Step 2.2.5
Reorder 12i12i and 1212.
12+12i(1+1i)(1-i)12+12i(1+1i)(1−i)
12+12i(1+1i)(1-i)12+12i(1+1i)(1−i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (1+1i)(1-i)(1+1i)(1−i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
12+12i1(1-i)+1i(1-i)12+12i1(1−i)+1i(1−i)
Step 2.3.1.2
Apply the distributive property.
12+12i1⋅1+1(-i)+1i(1-i)12+12i1⋅1+1(−i)+1i(1−i)
Step 2.3.1.3
Apply the distributive property.
12+12i1⋅1+1(-i)+1i⋅1+1i(-i)12+12i1⋅1+1(−i)+1i⋅1+1i(−i)
12+12i1⋅1+1(-i)+1i⋅1+1i(-i)12+12i1⋅1+1(−i)+1i⋅1+1i(−i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 11 by 11.
12+12i1+1(-i)+1i⋅1+1i(-i)12+12i1+1(−i)+1i⋅1+1i(−i)
Step 2.3.2.2
Multiply -1−1 by 11.
12+12i1-1i+1i⋅1+1i(-i)12+12i1−1i+1i⋅1+1i(−i)
Step 2.3.2.3
Multiply 11 by 11.
12+12i1-1i+1i+1i(-i)12+12i1−1i+1i+1i(−i)
Step 2.3.2.4
Multiply -1−1 by 11.
12+12i1-1i+1i-ii12+12i1−1i+1i−ii
Step 2.3.2.5
Raise ii to the power of 11.
12+12i1-1i+1i-(i1i)12+12i1−1i+1i−(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
12+12i1-1i+1i-(i1i1)12+12i1−1i+1i−(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
12+12i1-1i+1i-i1+112+12i1−1i+1i−i1+1
Step 2.3.2.8
Add 11 and 11.
12+12i1-1i+1i-i212+12i1−1i+1i−i2
Step 2.3.2.9
Add -1i−1i and 1i1i.
12+12i1+0-i212+12i1+0−i2
Step 2.3.2.10
Add 11 and 00.
12+12i1-i212+12i1−i2
12+12i1-i212+12i1−i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2i2 as -1−1.
12+12i1--112+12i1−−1
Step 2.3.3.2
Multiply -1−1 by -1−1.
12+12i1+112+12i1+1
12+12i1+112+12i1+1
Step 2.3.4
Add 11 and 11.
12+12i212+12i2
12+12i212+12i2
12+12i212+12i2
Step 3
Step 3.1
Factor 22 out of 1212.
2⋅6+12i22⋅6+12i2
Step 3.2
Factor 22 out of 12i12i.
2⋅6+2(6i)22⋅6+2(6i)2
Step 3.3
Factor 22 out of 2(6)+2(6i)2(6)+2(6i).
2(6+6i)22(6+6i)2
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 22 out of 22.
2(6+6i)2(1)2(6+6i)2(1)
Step 3.4.2
Cancel the common factor.
2(6+6i)2⋅1
Step 3.4.3
Rewrite the expression.
6+6i1
Step 3.4.4
Divide 6+6i by 1.
6+6i
6+6i
6+6i