Enter a problem...
Algebra Examples
x2+y2=1x2+y2=1 , x2-y2=1x2−y2=1
Step 1
Step 1.1
Add y2y2 to both sides of the equation.
x2=1+y2x2=1+y2
x2+y2=1x2+y2=1
Step 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√1+y2x=±√1+y2
x2+y2=1x2+y2=1
Step 1.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.3.1
First, use the positive value of the ±± to find the first solution.
x=√1+y2x=√1+y2
x2+y2=1x2+y2=1
Step 1.3.2
Next, use the negative value of the ±± to find the second solution.
x=-√1+y2x=−√1+y2
x2+y2=1x2+y2=1
Step 1.3.3
The complete solution is the result of both the positive and negative portions of the solution.
x=√1+y2x=√1+y2
x=-√1+y2x=−√1+y2
x2+y2=1x2+y2=1
x=√1+y2x=√1+y2
x=-√1+y2x=−√1+y2
x2+y2=1x2+y2=1
x=√1+y2x=√1+y2
x=-√1+y2x=−√1+y2
x2+y2=1x2+y2=1
Step 2
Step 2.1
Replace all occurrences of xx with √1+y2√1+y2 in each equation.
Step 2.1.1
Replace all occurrences of xx in x2+y2=1x2+y2=1 with √1+y2√1+y2.
(√1+y2)2+y2=1(√1+y2)2+y2=1
x=√1+y2x=√1+y2
Step 2.1.2
Simplify the left side.
Step 2.1.2.1
Simplify (√1+y2)2+y2(√1+y2)2+y2.
Step 2.1.2.1.1
Rewrite √1+y22√1+y22 as 1+y21+y2.
Step 2.1.2.1.1.1
Use n√ax=axnn√ax=axn to rewrite √1+y2√1+y2 as (1+y2)12(1+y2)12.
((1+y2)12)2+y2=1((1+y2)12)2+y2=1
x=√1+y2x=√1+y2
Step 2.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(1+y2)12⋅2+y2=1(1+y2)12⋅2+y2=1
x=√1+y2x=√1+y2
Step 2.1.2.1.1.3
Combine 1212 and 22.
(1+y2)22+y2=1(1+y2)22+y2=1
x=√1+y2x=√1+y2
Step 2.1.2.1.1.4
Cancel the common factor of 22.
Step 2.1.2.1.1.4.1
Cancel the common factor.
(1+y2)22+y2=1
x=√1+y2
Step 2.1.2.1.1.4.2
Rewrite the expression.
(1+y2)+y2=1
x=√1+y2
(1+y2)+y2=1
x=√1+y2
Step 2.1.2.1.1.5
Simplify.
1+y2+y2=1
x=√1+y2
1+y2+y2=1
x=√1+y2
Step 2.1.2.1.2
Add y2 and y2.
1+2y2=1
x=√1+y2
1+2y2=1
x=√1+y2
1+2y2=1
x=√1+y2
1+2y2=1
x=√1+y2
Step 2.2
Solve for y in 1+2y2=1.
Step 2.2.1
Move all terms not containing y to the right side of the equation.
Step 2.2.1.1
Subtract 1 from both sides of the equation.
2y2=1-1
x=√1+y2
Step 2.2.1.2
Subtract 1 from 1.
2y2=0
x=√1+y2
2y2=0
x=√1+y2
Step 2.2.2
Divide each term in 2y2=0 by 2 and simplify.
Step 2.2.2.1
Divide each term in 2y2=0 by 2.
2y22=02
x=√1+y2
Step 2.2.2.2
Simplify the left side.
Step 2.2.2.2.1
Cancel the common factor of 2.
Step 2.2.2.2.1.1
Cancel the common factor.
2y22=02
x=√1+y2
Step 2.2.2.2.1.2
Divide y2 by 1.
y2=02
x=√1+y2
y2=02
x=√1+y2
y2=02
x=√1+y2
Step 2.2.2.3
Simplify the right side.
Step 2.2.2.3.1
Divide 0 by 2.
y2=0
x=√1+y2
y2=0
x=√1+y2
y2=0
x=√1+y2
Step 2.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±√0
x=√1+y2
Step 2.2.4
Simplify ±√0.
Step 2.2.4.1
Rewrite 0 as 02.
y=±√02
x=√1+y2
Step 2.2.4.2
Pull terms out from under the radical, assuming positive real numbers.
y=±0
x=√1+y2
Step 2.2.4.3
Plus or minus 0 is 0.
y=0
x=√1+y2
y=0
x=√1+y2
y=0
x=√1+y2
Step 2.3
Replace all occurrences of y with 0 in each equation.
Step 2.3.1
Replace all occurrences of y in x=√1+y2 with 0.
x=√1+(0)2
y=0
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify √1+(0)2.
Step 2.3.2.1.1
Raising 0 to any positive power yields 0.
x=√1+0
y=0
Step 2.3.2.1.2
Add 1 and 0.
x=√1
y=0
Step 2.3.2.1.3
Any root of 1 is 1.
x=1
y=0
x=1
y=0
x=1
y=0
x=1
y=0
x=1
y=0
Step 3
Step 3.1
Replace all occurrences of x with -√1+y2 in each equation.
Step 3.1.1
Replace all occurrences of x in x2+y2=1 with -√1+y2.
(-√1+y2)2+y2=1
x=-√1+y2
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Simplify (-√1+y2)2+y2.
Step 3.1.2.1.1
Simplify each term.
Step 3.1.2.1.1.1
Apply the product rule to -√1+y2.
(-1)2√1+y22+y2=1
x=-√1+y2
Step 3.1.2.1.1.2
Raise -1 to the power of 2.
1√1+y22+y2=1
x=-√1+y2
Step 3.1.2.1.1.3
Multiply √1+y22 by 1.
√1+y22+y2=1
x=-√1+y2
Step 3.1.2.1.1.4
Rewrite √1+y22 as 1+y2.
Step 3.1.2.1.1.4.1
Use n√ax=axn to rewrite √1+y2 as (1+y2)12.
((1+y2)12)2+y2=1
x=-√1+y2
Step 3.1.2.1.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
(1+y2)12⋅2+y2=1
x=-√1+y2
Step 3.1.2.1.1.4.3
Combine 12 and 2.
(1+y2)22+y2=1
x=-√1+y2
Step 3.1.2.1.1.4.4
Cancel the common factor of 2.
Step 3.1.2.1.1.4.4.1
Cancel the common factor.
(1+y2)22+y2=1
x=-√1+y2
Step 3.1.2.1.1.4.4.2
Rewrite the expression.
(1+y2)+y2=1
x=-√1+y2
(1+y2)+y2=1
x=-√1+y2
Step 3.1.2.1.1.4.5
Simplify.
1+y2+y2=1
x=-√1+y2
1+y2+y2=1
x=-√1+y2
1+y2+y2=1
x=-√1+y2
Step 3.1.2.1.2
Add y2 and y2.
1+2y2=1
x=-√1+y2
1+2y2=1
x=-√1+y2
1+2y2=1
x=-√1+y2
1+2y2=1
x=-√1+y2
Step 3.2
Solve for y in 1+2y2=1.
Step 3.2.1
Move all terms not containing y to the right side of the equation.
Step 3.2.1.1
Subtract 1 from both sides of the equation.
2y2=1-1
x=-√1+y2
Step 3.2.1.2
Subtract 1 from 1.
2y2=0
x=-√1+y2
2y2=0
x=-√1+y2
Step 3.2.2
Divide each term in 2y2=0 by 2 and simplify.
Step 3.2.2.1
Divide each term in 2y2=0 by 2.
2y22=02
x=-√1+y2
Step 3.2.2.2
Simplify the left side.
Step 3.2.2.2.1
Cancel the common factor of 2.
Step 3.2.2.2.1.1
Cancel the common factor.
2y22=02
x=-√1+y2
Step 3.2.2.2.1.2
Divide y2 by 1.
y2=02
x=-√1+y2
y2=02
x=-√1+y2
y2=02
x=-√1+y2
Step 3.2.2.3
Simplify the right side.
Step 3.2.2.3.1
Divide 0 by 2.
y2=0
x=-√1+y2
y2=0
x=-√1+y2
y2=0
x=-√1+y2
Step 3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±√0
x=-√1+y2
Step 3.2.4
Simplify ±√0.
Step 3.2.4.1
Rewrite 0 as 02.
y=±√02
x=-√1+y2
Step 3.2.4.2
Pull terms out from under the radical, assuming positive real numbers.
y=±0
x=-√1+y2
Step 3.2.4.3
Plus or minus 0 is 0.
y=0
x=-√1+y2
y=0
x=-√1+y2
y=0
x=-√1+y2
Step 3.3
Replace all occurrences of y with 0 in each equation.
Step 3.3.1
Replace all occurrences of y in x=-√1+y2 with 0.
x=-√1+(0)2
y=0
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify -√1+(0)2.
Step 3.3.2.1.1
Raising 0 to any positive power yields 0.
x=-√1+0
y=0
Step 3.3.2.1.2
Add 1 and 0.
x=-√1
y=0
Step 3.3.2.1.3
Any root of 1 is 1.
x=-1⋅1
y=0
Step 3.3.2.1.4
Multiply -1 by 1.
x=-1
y=0
x=-1
y=0
x=-1
y=0
x=-1
y=0
x=-1
y=0
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(1,0)
(-1,0)
Step 5
The result can be shown in multiple forms.
Point Form:
(1,0),(-1,0)
Equation Form:
x=1,y=0
x=-1,y=0
Step 6
