Algebra Examples

Solve by Substitution x^2+y^2=1 , x^2-y^2=1
x2+y2=1x2+y2=1 , x2-y2=1x2y2=1
Step 1
Solve for xx in x2-y2=1x2y2=1.
Tap for more steps...
Step 1.1
Add y2y2 to both sides of the equation.
x2=1+y2x2=1+y2
x2+y2=1x2+y2=1
Step 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±1+y2x=±1+y2
x2+y2=1x2+y2=1
Step 1.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.3.1
First, use the positive value of the ±± to find the first solution.
x=1+y2x=1+y2
x2+y2=1x2+y2=1
Step 1.3.2
Next, use the negative value of the ±± to find the second solution.
x=-1+y2x=1+y2
x2+y2=1x2+y2=1
Step 1.3.3
The complete solution is the result of both the positive and negative portions of the solution.
x=1+y2x=1+y2
x=-1+y2x=1+y2
x2+y2=1x2+y2=1
x=1+y2x=1+y2
x=-1+y2x=1+y2
x2+y2=1x2+y2=1
x=1+y2x=1+y2
x=-1+y2x=1+y2
x2+y2=1x2+y2=1
Step 2
Solve the system x=1+y2,x2+y2=1x=1+y2,x2+y2=1.
Tap for more steps...
Step 2.1
Replace all occurrences of xx with 1+y21+y2 in each equation.
Tap for more steps...
Step 2.1.1
Replace all occurrences of xx in x2+y2=1x2+y2=1 with 1+y21+y2.
(1+y2)2+y2=1(1+y2)2+y2=1
x=1+y2x=1+y2
Step 2.1.2
Simplify the left side.
Tap for more steps...
Step 2.1.2.1
Simplify (1+y2)2+y2(1+y2)2+y2.
Tap for more steps...
Step 2.1.2.1.1
Rewrite 1+y221+y22 as 1+y21+y2.
Tap for more steps...
Step 2.1.2.1.1.1
Use nax=axnnax=axn to rewrite 1+y21+y2 as (1+y2)12(1+y2)12.
((1+y2)12)2+y2=1((1+y2)12)2+y2=1
x=1+y2x=1+y2
Step 2.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(1+y2)122+y2=1(1+y2)122+y2=1
x=1+y2x=1+y2
Step 2.1.2.1.1.3
Combine 1212 and 22.
(1+y2)22+y2=1(1+y2)22+y2=1
x=1+y2x=1+y2
Step 2.1.2.1.1.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.1.2.1.1.4.1
Cancel the common factor.
(1+y2)22+y2=1
x=1+y2
Step 2.1.2.1.1.4.2
Rewrite the expression.
(1+y2)+y2=1
x=1+y2
(1+y2)+y2=1
x=1+y2
Step 2.1.2.1.1.5
Simplify.
1+y2+y2=1
x=1+y2
1+y2+y2=1
x=1+y2
Step 2.1.2.1.2
Add y2 and y2.
1+2y2=1
x=1+y2
1+2y2=1
x=1+y2
1+2y2=1
x=1+y2
1+2y2=1
x=1+y2
Step 2.2
Solve for y in 1+2y2=1.
Tap for more steps...
Step 2.2.1
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.2.1.1
Subtract 1 from both sides of the equation.
2y2=1-1
x=1+y2
Step 2.2.1.2
Subtract 1 from 1.
2y2=0
x=1+y2
2y2=0
x=1+y2
Step 2.2.2
Divide each term in 2y2=0 by 2 and simplify.
Tap for more steps...
Step 2.2.2.1
Divide each term in 2y2=0 by 2.
2y22=02
x=1+y2
Step 2.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.2.2.1.1
Cancel the common factor.
2y22=02
x=1+y2
Step 2.2.2.2.1.2
Divide y2 by 1.
y2=02
x=1+y2
y2=02
x=1+y2
y2=02
x=1+y2
Step 2.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.2.3.1
Divide 0 by 2.
y2=0
x=1+y2
y2=0
x=1+y2
y2=0
x=1+y2
Step 2.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±0
x=1+y2
Step 2.2.4
Simplify ±0.
Tap for more steps...
Step 2.2.4.1
Rewrite 0 as 02.
y=±02
x=1+y2
Step 2.2.4.2
Pull terms out from under the radical, assuming positive real numbers.
y=±0
x=1+y2
Step 2.2.4.3
Plus or minus 0 is 0.
y=0
x=1+y2
y=0
x=1+y2
y=0
x=1+y2
Step 2.3
Replace all occurrences of y with 0 in each equation.
Tap for more steps...
Step 2.3.1
Replace all occurrences of y in x=1+y2 with 0.
x=1+(0)2
y=0
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Simplify 1+(0)2.
Tap for more steps...
Step 2.3.2.1.1
Raising 0 to any positive power yields 0.
x=1+0
y=0
Step 2.3.2.1.2
Add 1 and 0.
x=1
y=0
Step 2.3.2.1.3
Any root of 1 is 1.
x=1
y=0
x=1
y=0
x=1
y=0
x=1
y=0
x=1
y=0
Step 3
Solve the system x=-1+y2,x2+y2=1.
Tap for more steps...
Step 3.1
Replace all occurrences of x with -1+y2 in each equation.
Tap for more steps...
Step 3.1.1
Replace all occurrences of x in x2+y2=1 with -1+y2.
(-1+y2)2+y2=1
x=-1+y2
Step 3.1.2
Simplify the left side.
Tap for more steps...
Step 3.1.2.1
Simplify (-1+y2)2+y2.
Tap for more steps...
Step 3.1.2.1.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1.1
Apply the product rule to -1+y2.
(-1)21+y22+y2=1
x=-1+y2
Step 3.1.2.1.1.2
Raise -1 to the power of 2.
11+y22+y2=1
x=-1+y2
Step 3.1.2.1.1.3
Multiply 1+y22 by 1.
1+y22+y2=1
x=-1+y2
Step 3.1.2.1.1.4
Rewrite 1+y22 as 1+y2.
Tap for more steps...
Step 3.1.2.1.1.4.1
Use nax=axn to rewrite 1+y2 as (1+y2)12.
((1+y2)12)2+y2=1
x=-1+y2
Step 3.1.2.1.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
(1+y2)122+y2=1
x=-1+y2
Step 3.1.2.1.1.4.3
Combine 12 and 2.
(1+y2)22+y2=1
x=-1+y2
Step 3.1.2.1.1.4.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.1.2.1.1.4.4.1
Cancel the common factor.
(1+y2)22+y2=1
x=-1+y2
Step 3.1.2.1.1.4.4.2
Rewrite the expression.
(1+y2)+y2=1
x=-1+y2
(1+y2)+y2=1
x=-1+y2
Step 3.1.2.1.1.4.5
Simplify.
1+y2+y2=1
x=-1+y2
1+y2+y2=1
x=-1+y2
1+y2+y2=1
x=-1+y2
Step 3.1.2.1.2
Add y2 and y2.
1+2y2=1
x=-1+y2
1+2y2=1
x=-1+y2
1+2y2=1
x=-1+y2
1+2y2=1
x=-1+y2
Step 3.2
Solve for y in 1+2y2=1.
Tap for more steps...
Step 3.2.1
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 3.2.1.1
Subtract 1 from both sides of the equation.
2y2=1-1
x=-1+y2
Step 3.2.1.2
Subtract 1 from 1.
2y2=0
x=-1+y2
2y2=0
x=-1+y2
Step 3.2.2
Divide each term in 2y2=0 by 2 and simplify.
Tap for more steps...
Step 3.2.2.1
Divide each term in 2y2=0 by 2.
2y22=02
x=-1+y2
Step 3.2.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.2.2.1.1
Cancel the common factor.
2y22=02
x=-1+y2
Step 3.2.2.2.1.2
Divide y2 by 1.
y2=02
x=-1+y2
y2=02
x=-1+y2
y2=02
x=-1+y2
Step 3.2.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.2.3.1
Divide 0 by 2.
y2=0
x=-1+y2
y2=0
x=-1+y2
y2=0
x=-1+y2
Step 3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±0
x=-1+y2
Step 3.2.4
Simplify ±0.
Tap for more steps...
Step 3.2.4.1
Rewrite 0 as 02.
y=±02
x=-1+y2
Step 3.2.4.2
Pull terms out from under the radical, assuming positive real numbers.
y=±0
x=-1+y2
Step 3.2.4.3
Plus or minus 0 is 0.
y=0
x=-1+y2
y=0
x=-1+y2
y=0
x=-1+y2
Step 3.3
Replace all occurrences of y with 0 in each equation.
Tap for more steps...
Step 3.3.1
Replace all occurrences of y in x=-1+y2 with 0.
x=-1+(0)2
y=0
Step 3.3.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.1
Simplify -1+(0)2.
Tap for more steps...
Step 3.3.2.1.1
Raising 0 to any positive power yields 0.
x=-1+0
y=0
Step 3.3.2.1.2
Add 1 and 0.
x=-1
y=0
Step 3.3.2.1.3
Any root of 1 is 1.
x=-11
y=0
Step 3.3.2.1.4
Multiply -1 by 1.
x=-1
y=0
x=-1
y=0
x=-1
y=0
x=-1
y=0
x=-1
y=0
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(1,0)
(-1,0)
Step 5
The result can be shown in multiple forms.
Point Form:
(1,0),(-1,0)
Equation Form:
x=1,y=0
x=-1,y=0
Step 6
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]