Algebra Examples

Solve by Completing the Square x^2+10x-1=0
x2+10x-1=0x2+10x1=0
Step 1
Add 11 to both sides of the equation.
x2+10x=1x2+10x=1
Step 2
To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of bb.
(b2)2=(5)2(b2)2=(5)2
Step 3
Add the term to each side of the equation.
x2+10x+(5)2=1+(5)2x2+10x+(5)2=1+(5)2
Step 4
Simplify the equation.
Tap for more steps...
Step 4.1
Simplify the left side.
Tap for more steps...
Step 4.1.1
Raise 55 to the power of 22.
x2+10x+25=1+(5)2x2+10x+25=1+(5)2
x2+10x+25=1+(5)2x2+10x+25=1+(5)2
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify 1+(5)21+(5)2.
Tap for more steps...
Step 4.2.1.1
Raise 55 to the power of 22.
x2+10x+25=1+25x2+10x+25=1+25
Step 4.2.1.2
Add 11 and 2525.
x2+10x+25=26x2+10x+25=26
x2+10x+25=26x2+10x+25=26
x2+10x+25=26x2+10x+25=26
x2+10x+25=26x2+10x+25=26
Step 5
Factor the perfect trinomial square into (x+5)2(x+5)2.
(x+5)2=26(x+5)2=26
Step 6
Solve the equation for xx.
Tap for more steps...
Step 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x+5=±26x+5=±26
Step 6.2
Subtract 55 from both sides of the equation.
x=±26-5x=±265
x=±26-5x=±265
Step 7
The result can be shown in multiple forms.
Exact Form:
x=±26-5x=±265
Decimal Form:
x=0.09901951,-10.09901951x=0.09901951,10.09901951
 [x2  12  π  xdx ]  x2  12  π  xdx