Enter a problem...
Algebra Examples
(a+bi)(a−bi)
Step 1
Step 1.1
Apply the distributive property.
a(a−bi)+bi(a−bi)
Step 1.2
Apply the distributive property.
a⋅a+a(−bi)+bi(a−bi)
Step 1.3
Apply the distributive property.
a⋅a+a(−bi)+bia+bi(−bi)
a⋅a+a(−bi)+bia+bi(−bi)
Step 2
Step 2.1
Combine the opposite terms in a⋅a+a(−bi)+bia+bi(−bi).
Step 2.1.1
Reorder the factors in the terms a(−bi) and bia.
a⋅a−iab+iab+bi(−bi)
Step 2.1.2
Add −iab and iab.
a⋅a+0+bi(−bi)
Step 2.1.3
Add a⋅a and 0.
a⋅a+bi(−bi)
a⋅a+bi(−bi)
Step 2.2
Simplify each term.
Step 2.2.1
Multiply a by a.
a2+bi(−bi)
Step 2.2.2
Multiply b by b by adding the exponents.
Step 2.2.2.1
Move b.
a2+b⋅bi(−1i)
Step 2.2.2.2
Multiply b by b.
a2+b2i(−1i)
a2+b2i(−1i)
Step 2.2.3
Rewrite −1i as −i.
a2+b2i(−i)
Step 2.2.4
Multiply b2i(−i).
Step 2.2.4.1
Raise i to the power of 1.
a2+b2(−(i1i))
Step 2.2.4.2
Raise i to the power of 1.
a2+b2(−(i1i1))
Step 2.2.4.3
Use the power rule aman=am+n to combine exponents.
a2+b2(−i1+1)
Step 2.2.4.4
Add 1 and 1.
a2+b2(−i2)
a2+b2(−i2)
Step 2.2.5
Rewrite i2 as −1.
a2+b2(−−1)
Step 2.2.6
Multiply −1 by −1.
a2+b2⋅1
Step 2.2.7
Multiply b2 by 1.
a2+b2
a2+b2
a2+b2