Enter a problem...
Algebra Examples
f(x)=x2-5x+4
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for x2-5x+4.
Step 1.1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=-5
c=4
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.1.3
Find the value of d using the formula d=b2a.
Step 1.1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=-52⋅1
Step 1.1.1.3.2
Simplify the right side.
Step 1.1.1.3.2.1
Multiply 2 by 1.
d=-52
Step 1.1.1.3.2.2
Move the negative in front of the fraction.
d=-52
d=-52
d=-52
Step 1.1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=4-(-5)24⋅1
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Simplify each term.
Step 1.1.1.4.2.1.1
Raise -5 to the power of 2.
e=4-254⋅1
Step 1.1.1.4.2.1.2
Multiply 4 by 1.
e=4-254
e=4-254
Step 1.1.1.4.2.2
To write 4 as a fraction with a common denominator, multiply by 44.
e=4⋅44-254
Step 1.1.1.4.2.3
Combine 4 and 44.
e=4⋅44-254
Step 1.1.1.4.2.4
Combine the numerators over the common denominator.
e=4⋅4-254
Step 1.1.1.4.2.5
Simplify the numerator.
Step 1.1.1.4.2.5.1
Multiply 4 by 4.
e=16-254
Step 1.1.1.4.2.5.2
Subtract 25 from 16.
e=-94
e=-94
Step 1.1.1.4.2.6
Move the negative in front of the fraction.
e=-94
e=-94
e=-94
Step 1.1.1.5
Substitute the values of a, d, and e into the vertex form (x-52)2-94.
(x-52)2-94
(x-52)2-94
Step 1.1.2
Set y equal to the new right side.
y=(x-52)2-94
y=(x-52)2-94
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=52
k=-94
Step 1.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k).
(52,-94)
Step 1.5
Find p, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14⋅1
Step 1.5.3
Cancel the common factor of 1.
Step 1.5.3.1
Cancel the common factor.
14⋅1
Step 1.5.3.2
Rewrite the expression.
14
14
14
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(52,-2)
(52,-2)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=52
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-52
y=-52
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
Step 2
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=(1)2-5⋅1+4
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
One to any power is one.
f(1)=1-5⋅1+4
Step 2.2.1.2
Multiply -5 by 1.
f(1)=1-5+4
f(1)=1-5+4
Step 2.2.2
Simplify by adding and subtracting.
Step 2.2.2.1
Subtract 5 from 1.
f(1)=-4+4
Step 2.2.2.2
Add -4 and 4.
f(1)=0
f(1)=0
Step 2.2.3
The final answer is 0.
0
0
Step 2.3
The y value at x=1 is 0.
y=0
Step 2.4
Replace the variable x with 0 in the expression.
f(0)=(0)2-5⋅0+4
Step 2.5
Simplify the result.
Step 2.5.1
Simplify each term.
Step 2.5.1.1
Raising 0 to any positive power yields 0.
f(0)=0-5⋅0+4
Step 2.5.1.2
Multiply -5 by 0.
f(0)=0+0+4
f(0)=0+0+4
Step 2.5.2
Simplify by adding numbers.
Step 2.5.2.1
Add 0 and 0.
f(0)=0+4
Step 2.5.2.2
Add 0 and 4.
f(0)=4
f(0)=4
Step 2.5.3
The final answer is 4.
4
4
Step 2.6
The y value at x=0 is 4.
y=4
Step 2.7
Replace the variable x with 3 in the expression.
f(3)=(3)2-5⋅3+4
Step 2.8
Simplify the result.
Step 2.8.1
Simplify each term.
Step 2.8.1.1
Raise 3 to the power of 2.
f(3)=9-5⋅3+4
Step 2.8.1.2
Multiply -5 by 3.
f(3)=9-15+4
f(3)=9-15+4
Step 2.8.2
Simplify by adding and subtracting.
Step 2.8.2.1
Subtract 15 from 9.
f(3)=-6+4
Step 2.8.2.2
Add -6 and 4.
f(3)=-2
f(3)=-2
Step 2.8.3
The final answer is -2.
-2
-2
Step 2.9
The y value at x=3 is -2.
y=-2
Step 2.10
Replace the variable x with 4 in the expression.
f(4)=(4)2-5⋅4+4
Step 2.11
Simplify the result.
Step 2.11.1
Simplify each term.
Step 2.11.1.1
Raise 4 to the power of 2.
f(4)=16-5⋅4+4
Step 2.11.1.2
Multiply -5 by 4.
f(4)=16-20+4
f(4)=16-20+4
Step 2.11.2
Simplify by adding and subtracting.
Step 2.11.2.1
Subtract 20 from 16.
f(4)=-4+4
Step 2.11.2.2
Add -4 and 4.
f(4)=0
f(4)=0
Step 2.11.3
The final answer is 0.
0
0
Step 2.12
The y value at x=4 is 0.
y=0
Step 2.13
Graph the parabola using its properties and the selected points.
xy041052-943-240
xy041052-943-240
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (52,-94)
Focus: (52,-2)
Axis of Symmetry: x=52
Directrix: y=-52
xy041052-943-240
Step 4