Algebra Examples

Solve Using the Quadratic Formula x(x-4)=0
x(x-4)=0
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Simplify x(x-4).
Tap for more steps...
Step 1.1.1
Apply the distributive property.
xx+x-4=0
Step 1.1.2
Simplify the expression.
Tap for more steps...
Step 1.1.2.1
Multiply x by x.
x2+x-4=0
Step 1.1.2.2
Move -4 to the left of x.
x2-4x=0
x2-4x=0
x2-4x=0
x2-4x=0
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3
Substitute the values a=1, b=-4, and c=0 into the quadratic formula and solve for x.
4±(-4)2-4(10)21
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise -4 to the power of 2.
x=4±16-41021
Step 4.1.2
Multiply -410.
Tap for more steps...
Step 4.1.2.1
Multiply -4 by 1.
x=4±16-4021
Step 4.1.2.2
Multiply -4 by 0.
x=4±16+021
x=4±16+021
Step 4.1.3
Add 16 and 0.
x=4±1621
Step 4.1.4
Rewrite 16 as 42.
x=4±4221
Step 4.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=4±421
x=4±421
Step 4.2
Multiply 2 by 1.
x=4±42
Step 4.3
Simplify 4±42.
x=2±2
x=2±2
Step 5
The final answer is the combination of both solutions.
x=4,0
 [x2  12  π  xdx ]