Enter a problem...
Algebra Examples
2x-3y=-122x−3y=−12
Step 1
Step 1.1
Subtract 2x2x from both sides of the equation.
-3y=-12-2x−3y=−12−2x
Step 1.2
Divide each term in -3y=-12-2x−3y=−12−2x by -3−3 and simplify.
Step 1.2.1
Divide each term in -3y=-12-2x−3y=−12−2x by -3−3.
-3y-3=-12-3+-2x-3−3y−3=−12−3+−2x−3
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of -3−3.
Step 1.2.2.1.1
Cancel the common factor.
-3y-3=-12-3+-2x-3
Step 1.2.2.1.2
Divide y by 1.
y=-12-3+-2x-3
y=-12-3+-2x-3
y=-12-3+-2x-3
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Divide -12 by -3.
y=4+-2x-3
Step 1.2.3.1.2
Dividing two negative values results in a positive value.
y=4+2x3
y=4+2x3
y=4+2x3
y=4+2x3
y=4+2x3
Step 2
Step 2.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 2.2
Reorder 4 and 2x3.
y=2x3+4
Step 2.3
Reorder terms.
y=23x+4
y=23x+4
Step 3
Step 3.1
Find the values of m and b using the form y=mx+b.
m=23
b=4
Step 3.2
The slope of the line is the value of m, and the y-intercept is the value of b.
Slope: 23
y-intercept: (0,4)
Slope: 23
y-intercept: (0,4)
Step 4
Step 4.1
Write in y=mx+b form.
Step 4.1.1
Reorder 4 and 2x3.
y=2x3+4
Step 4.1.2
Reorder terms.
y=23x+4
y=23x+4
Step 4.2
Create a table of the x and y values.
xy0436
xy0436
Step 5
Graph the line using the slope and the y-intercept, or the points.
Slope: 23
y-intercept: (0,4)
xy0436
Step 6