Algebra Examples

Find the Inverse f(x)=1/3x-2
f(x)=13x-2f(x)=13x2
Step 1
Write f(x)=13x-2f(x)=13x2 as an equation.
y=13x-2y=13x2
Step 2
Interchange the variables.
x=13y-2x=13y2
Step 3
Solve for yy.
Tap for more steps...
Step 3.1
Rewrite the equation as 13y-2=x13y2=x.
13y-2=x13y2=x
Step 3.2
Combine 1313 and yy.
y3-2=xy32=x
Step 3.3
Add 22 to both sides of the equation.
y3=x+2y3=x+2
Step 3.4
Multiply both sides of the equation by 33.
3y3=3(x+2)3y3=3(x+2)
Step 3.5
Simplify both sides of the equation.
Tap for more steps...
Step 3.5.1
Simplify the left side.
Tap for more steps...
Step 3.5.1.1
Cancel the common factor of 33.
Tap for more steps...
Step 3.5.1.1.1
Cancel the common factor.
3y3=3(x+2)
Step 3.5.1.1.2
Rewrite the expression.
y=3(x+2)
y=3(x+2)
y=3(x+2)
Step 3.5.2
Simplify the right side.
Tap for more steps...
Step 3.5.2.1
Simplify 3(x+2).
Tap for more steps...
Step 3.5.2.1.1
Apply the distributive property.
y=3x+32
Step 3.5.2.1.2
Multiply 3 by 2.
y=3x+6
y=3x+6
y=3x+6
y=3x+6
y=3x+6
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=3x+6
Step 5
Verify if f-1(x)=3x+6 is the inverse of f(x)=13x-2.
Tap for more steps...
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(13x-2) by substituting in the value of f into f-1.
f-1(13x-2)=3(13x-2)+6
Step 5.2.3
Simplify each term.
Tap for more steps...
Step 5.2.3.1
Combine 13 and x.
f-1(13x-2)=3(x3-2)+6
Step 5.2.3.2
Apply the distributive property.
f-1(13x-2)=3(x3)+3-2+6
Step 5.2.3.3
Cancel the common factor of 3.
Tap for more steps...
Step 5.2.3.3.1
Cancel the common factor.
f-1(13x-2)=3(x3)+3-2+6
Step 5.2.3.3.2
Rewrite the expression.
f-1(13x-2)=x+3-2+6
f-1(13x-2)=x+3-2+6
Step 5.2.3.4
Multiply 3 by -2.
f-1(13x-2)=x-6+6
f-1(13x-2)=x-6+6
Step 5.2.4
Combine the opposite terms in x-6+6.
Tap for more steps...
Step 5.2.4.1
Add -6 and 6.
f-1(13x-2)=x+0
Step 5.2.4.2
Add x and 0.
f-1(13x-2)=x
f-1(13x-2)=x
f-1(13x-2)=x
Step 5.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(3x+6) by substituting in the value of f-1 into f.
f(3x+6)=13(3x+6)-2
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Apply the distributive property.
f(3x+6)=13(3x)+136-2
Step 5.3.3.2
Cancel the common factor of 3.
Tap for more steps...
Step 5.3.3.2.1
Factor 3 out of 3x.
f(3x+6)=13(3(x))+136-2
Step 5.3.3.2.2
Cancel the common factor.
f(3x+6)=13(3x)+136-2
Step 5.3.3.2.3
Rewrite the expression.
f(3x+6)=x+136-2
f(3x+6)=x+136-2
Step 5.3.3.3
Cancel the common factor of 3.
Tap for more steps...
Step 5.3.3.3.1
Factor 3 out of 6.
f(3x+6)=x+13(3(2))-2
Step 5.3.3.3.2
Cancel the common factor.
f(3x+6)=x+13(32)-2
Step 5.3.3.3.3
Rewrite the expression.
f(3x+6)=x+2-2
f(3x+6)=x+2-2
f(3x+6)=x+2-2
Step 5.3.4
Combine the opposite terms in x+2-2.
Tap for more steps...
Step 5.3.4.1
Subtract 2 from 2.
f(3x+6)=x+0
Step 5.3.4.2
Add x and 0.
f(3x+6)=x
f(3x+6)=x
f(3x+6)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=3x+6 is the inverse of f(x)=13x-2.
f-1(x)=3x+6
f-1(x)=3x+6
 [x2  12  π  xdx ]