Enter a problem...
Algebra Examples
f(x)=13x-2f(x)=13x−2
Step 1
Write f(x)=13x-2f(x)=13x−2 as an equation.
y=13x-2y=13x−2
Step 2
Interchange the variables.
x=13y-2x=13y−2
Step 3
Step 3.1
Rewrite the equation as 13y-2=x13y−2=x.
13y-2=x13y−2=x
Step 3.2
Combine 1313 and yy.
y3-2=xy3−2=x
Step 3.3
Add 22 to both sides of the equation.
y3=x+2y3=x+2
Step 3.4
Multiply both sides of the equation by 33.
3y3=3(x+2)3y3=3(x+2)
Step 3.5
Simplify both sides of the equation.
Step 3.5.1
Simplify the left side.
Step 3.5.1.1
Cancel the common factor of 33.
Step 3.5.1.1.1
Cancel the common factor.
3y3=3(x+2)
Step 3.5.1.1.2
Rewrite the expression.
y=3(x+2)
y=3(x+2)
y=3(x+2)
Step 3.5.2
Simplify the right side.
Step 3.5.2.1
Simplify 3(x+2).
Step 3.5.2.1.1
Apply the distributive property.
y=3x+3⋅2
Step 3.5.2.1.2
Multiply 3 by 2.
y=3x+6
y=3x+6
y=3x+6
y=3x+6
y=3x+6
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=3x+6
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(13x-2) by substituting in the value of f into f-1.
f-1(13x-2)=3(13x-2)+6
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Combine 13 and x.
f-1(13x-2)=3(x3-2)+6
Step 5.2.3.2
Apply the distributive property.
f-1(13x-2)=3(x3)+3⋅-2+6
Step 5.2.3.3
Cancel the common factor of 3.
Step 5.2.3.3.1
Cancel the common factor.
f-1(13x-2)=3(x3)+3⋅-2+6
Step 5.2.3.3.2
Rewrite the expression.
f-1(13x-2)=x+3⋅-2+6
f-1(13x-2)=x+3⋅-2+6
Step 5.2.3.4
Multiply 3 by -2.
f-1(13x-2)=x-6+6
f-1(13x-2)=x-6+6
Step 5.2.4
Combine the opposite terms in x-6+6.
Step 5.2.4.1
Add -6 and 6.
f-1(13x-2)=x+0
Step 5.2.4.2
Add x and 0.
f-1(13x-2)=x
f-1(13x-2)=x
f-1(13x-2)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(3x+6) by substituting in the value of f-1 into f.
f(3x+6)=13⋅(3x+6)-2
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Apply the distributive property.
f(3x+6)=13⋅(3x)+13⋅6-2
Step 5.3.3.2
Cancel the common factor of 3.
Step 5.3.3.2.1
Factor 3 out of 3x.
f(3x+6)=13⋅(3(x))+13⋅6-2
Step 5.3.3.2.2
Cancel the common factor.
f(3x+6)=13⋅(3x)+13⋅6-2
Step 5.3.3.2.3
Rewrite the expression.
f(3x+6)=x+13⋅6-2
f(3x+6)=x+13⋅6-2
Step 5.3.3.3
Cancel the common factor of 3.
Step 5.3.3.3.1
Factor 3 out of 6.
f(3x+6)=x+13⋅(3(2))-2
Step 5.3.3.3.2
Cancel the common factor.
f(3x+6)=x+13⋅(3⋅2)-2
Step 5.3.3.3.3
Rewrite the expression.
f(3x+6)=x+2-2
f(3x+6)=x+2-2
f(3x+6)=x+2-2
Step 5.3.4
Combine the opposite terms in x+2-2.
Step 5.3.4.1
Subtract 2 from 2.
f(3x+6)=x+0
Step 5.3.4.2
Add x and 0.
f(3x+6)=x
f(3x+6)=x
f(3x+6)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=3x+6 is the inverse of f(x)=13x-2.
f-1(x)=3x+6
f-1(x)=3x+6