Algebra Examples

Factor 27a^3-125b^3
27a3-125b3
Step 1
Rewrite 27a3 as (3a)3.
(3a)3-125b3
Step 2
Rewrite 125b3 as (5b)3.
(3a)3-(5b)3
Step 3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=3a and b=5b.
(3a-(5b))((3a)2+3a(5b)+(5b)2)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Multiply 5 by -1.
(3a-5b)((3a)2+3a(5b)+(5b)2)
Step 4.2
Apply the product rule to 3a.
(3a-5b)(32a2+3a(5b)+(5b)2)
Step 4.3
Raise 3 to the power of 2.
(3a-5b)(9a2+3a(5b)+(5b)2)
Step 4.4
Rewrite using the commutative property of multiplication.
(3a-5b)(9a2+35ab+(5b)2)
Step 4.5
Multiply 3 by 5.
(3a-5b)(9a2+15ab+(5b)2)
Step 4.6
Apply the product rule to 5b.
(3a-5b)(9a2+15ab+52b2)
Step 4.7
Raise 5 to the power of 2.
(3a-5b)(9a2+15ab+25b2)
(3a-5b)(9a2+15ab+25b2)
 [x2  12  π  xdx ]