Algebra Examples

Solve by Completing the Square x^2+6x-10=0
x2+6x-10=0x2+6x10=0
Step 1
Add 1010 to both sides of the equation.
x2+6x=10x2+6x=10
Step 2
To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of bb.
(b2)2=(3)2(b2)2=(3)2
Step 3
Add the term to each side of the equation.
x2+6x+(3)2=10+(3)2x2+6x+(3)2=10+(3)2
Step 4
Simplify the equation.
Tap for more steps...
Step 4.1
Simplify the left side.
Tap for more steps...
Step 4.1.1
Raise 33 to the power of 22.
x2+6x+9=10+(3)2x2+6x+9=10+(3)2
x2+6x+9=10+(3)2x2+6x+9=10+(3)2
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify 10+(3)210+(3)2.
Tap for more steps...
Step 4.2.1.1
Raise 33 to the power of 22.
x2+6x+9=10+9x2+6x+9=10+9
Step 4.2.1.2
Add 1010 and 99.
x2+6x+9=19x2+6x+9=19
x2+6x+9=19x2+6x+9=19
x2+6x+9=19x2+6x+9=19
x2+6x+9=19x2+6x+9=19
Step 5
Factor the perfect trinomial square into (x+3)2(x+3)2.
(x+3)2=19(x+3)2=19
Step 6
Solve the equation for xx.
Tap for more steps...
Step 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x+3=±19x+3=±19
Step 6.2
Subtract 33 from both sides of the equation.
x=±19-3x=±193
x=±19-3x=±193
Step 7
The result can be shown in multiple forms.
Exact Form:
x=±19-3x=±193
Decimal Form:
x=1.35889894,-7.35889894x=1.35889894,7.35889894
 [x2  12  π  xdx ]  x2  12  π  xdx