Enter a problem...
Algebra Examples
[123456789]⎡⎢⎣123456789⎤⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|5689|∣∣∣5689∣∣∣
Step 1.4
Multiply element a11a11 by its cofactor.
1|5689|1∣∣∣5689∣∣∣
Step 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4679|∣∣∣4679∣∣∣
Step 1.6
Multiply element a12a12 by its cofactor.
-2|4679|−2∣∣∣4679∣∣∣
Step 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|4578|∣∣∣4578∣∣∣
Step 1.8
Multiply element a13a13 by its cofactor.
3|4578|3∣∣∣4578∣∣∣
Step 1.9
Add the terms together.
1|5689|-2|4679|+3|4578|1∣∣∣5689∣∣∣−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
1|5689|-2|4679|+3|4578|1∣∣∣5689∣∣∣−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
Step 2
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(5⋅9-8⋅6)-2|4679|+3|4578|1(5⋅9−8⋅6)−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 55 by 99.
1(45-8⋅6)-2|4679|+3|4578|1(45−8⋅6)−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
Step 2.2.1.2
Multiply -8−8 by 66.
1(45-48)-2|4679|+3|4578|1(45−48)−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
1(45-48)-2|4679|+3|4578|1(45−48)−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
Step 2.2.2
Subtract 4848 from 4545.
1⋅-3-2|4679|+3|4578|1⋅−3−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
1⋅-3-2|4679|+3|4578|1⋅−3−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
1⋅-3-2|4679|+3|4578|1⋅−3−2∣∣∣4679∣∣∣+3∣∣∣4578∣∣∣
Step 3
Step 3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-3-2(4⋅9-7⋅6)+3|4578|1⋅−3−2(4⋅9−7⋅6)+3∣∣∣4578∣∣∣
Step 3.2
Simplify the determinant.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 44 by 99.
1⋅-3-2(36-7⋅6)+3|4578|1⋅−3−2(36−7⋅6)+3∣∣∣4578∣∣∣
Step 3.2.1.2
Multiply -7−7 by 66.
1⋅-3-2(36-42)+3|4578|1⋅−3−2(36−42)+3∣∣∣4578∣∣∣
1⋅-3-2(36-42)+3|4578|1⋅−3−2(36−42)+3∣∣∣4578∣∣∣
Step 3.2.2
Subtract 4242 from 3636.
1⋅-3-2⋅-6+3|4578|1⋅−3−2⋅−6+3∣∣∣4578∣∣∣
1⋅-3-2⋅-6+3|4578|1⋅−3−2⋅−6+3∣∣∣4578∣∣∣
1⋅-3-2⋅-6+3|4578|1⋅−3−2⋅−6+3∣∣∣4578∣∣∣
Step 4
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-3-2⋅-6+3(4⋅8-7⋅5)1⋅−3−2⋅−6+3(4⋅8−7⋅5)
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 44 by 88.
1⋅-3-2⋅-6+3(32-7⋅5)1⋅−3−2⋅−6+3(32−7⋅5)
Step 4.2.1.2
Multiply -7−7 by 55.
1⋅-3-2⋅-6+3(32-35)1⋅−3−2⋅−6+3(32−35)
1⋅-3-2⋅-6+3(32-35)1⋅−3−2⋅−6+3(32−35)
Step 4.2.2
Subtract 3535 from 3232.
1⋅-3-2⋅-6+3⋅-31⋅−3−2⋅−6+3⋅−3
1⋅-3-2⋅-6+3⋅-31⋅−3−2⋅−6+3⋅−3
1⋅-3-2⋅-6+3⋅-31⋅−3−2⋅−6+3⋅−3
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Multiply -3−3 by 11.
-3-2⋅-6+3⋅-3−3−2⋅−6+3⋅−3
Step 5.1.2
Multiply -2−2 by -6−6.
-3+12+3⋅-3−3+12+3⋅−3
Step 5.1.3
Multiply 33 by -3−3.
-3+12-9−3+12−9
-3+12-9−3+12−9
Step 5.2
Add -3−3 and 1212.
9-99−9
Step 5.3
Subtract 99 from 99.
00
00