Algebra Examples

Solve by Factoring fifth root of x^2+2x=-1
5x2+2x=-15x2+2x=1
Step 1
Add 11 to both sides of the equation.
5x2+2x+1=05x2+2x+1=0
Step 2
Factor xx out of x2+2xx2+2x.
Tap for more steps...
Step 2.1
Factor xx out of x2x2.
5xx+2x+1=05xx+2x+1=0
Step 2.2
Factor xx out of 2x2x.
5xx+x2+1=05xx+x2+1=0
Step 2.3
Factor xx out of xx+x2xx+x2.
5x(x+2)+1=05x(x+2)+1=0
5x(x+2)+1=05x(x+2)+1=0
Step 3
Subtract 11 from both sides of the equation.
5x(x+2)=-15x(x+2)=1
Step 4
To remove the radical on the left side of the equation, raise both sides of the equation to the power of 55.
5x(x+2)5=(-1)55x(x+2)5=(1)5
Step 5
Simplify each side of the equation.
Tap for more steps...
Step 5.1
Use nax=axnnax=axn to rewrite 5x(x+2)5x(x+2) as (x(x+2))15(x(x+2))15.
((x(x+2))15)5=(-1)5((x(x+2))15)5=(1)5
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Simplify ((x(x+2))15)5((x(x+2))15)5.
Tap for more steps...
Step 5.2.1.1
Multiply the exponents in ((x(x+2))15)5((x(x+2))15)5.
Tap for more steps...
Step 5.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(x(x+2))155=(-1)5(x(x+2))155=(1)5
Step 5.2.1.1.2
Cancel the common factor of 55.
Tap for more steps...
Step 5.2.1.1.2.1
Cancel the common factor.
(x(x+2))155=(-1)5
Step 5.2.1.1.2.2
Rewrite the expression.
(x(x+2))1=(-1)5
(x(x+2))1=(-1)5
(x(x+2))1=(-1)5
Step 5.2.1.2
Apply the distributive property.
(xx+x2)1=(-1)5
Step 5.2.1.3
Simplify the expression.
Tap for more steps...
Step 5.2.1.3.1
Multiply x by x.
(x2+x2)1=(-1)5
Step 5.2.1.3.2
Move 2 to the left of x.
x2+2x=(-1)5
x2+2x=(-1)5
x2+2x=(-1)5
x2+2x=(-1)5
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Raise -1 to the power of 5.
x2+2x=-1
x2+2x=-1
x2+2x=-1
Step 6
Solve for x.
Tap for more steps...
Step 6.1
Add 1 to both sides of the equation.
x2+2x+1=0
Step 6.2
Factor using the perfect square rule.
Tap for more steps...
Step 6.2.1
Rewrite 1 as 12.
x2+2x+12=0
Step 6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
2x=2x1
Step 6.2.3
Rewrite the polynomial.
x2+2x1+12=0
Step 6.2.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=x and b=1.
(x+1)2=0
(x+1)2=0
Step 6.3
Set the x+1 equal to 0.
x+1=0
Step 6.4
Subtract 1 from both sides of the equation.
x=-1
x=-1
 [x2  12  π  xdx ]