Enter a problem...
Algebra Examples
5√x2+2x=-15√x2+2x=−1
Step 1
Add 11 to both sides of the equation.
5√x2+2x+1=05√x2+2x+1=0
Step 2
Step 2.1
Factor xx out of x2x2.
5√x⋅x+2x+1=05√x⋅x+2x+1=0
Step 2.2
Factor xx out of 2x2x.
5√x⋅x+x⋅2+1=05√x⋅x+x⋅2+1=0
Step 2.3
Factor xx out of x⋅x+x⋅2x⋅x+x⋅2.
5√x(x+2)+1=05√x(x+2)+1=0
5√x(x+2)+1=05√x(x+2)+1=0
Step 3
Subtract 11 from both sides of the equation.
5√x(x+2)=-15√x(x+2)=−1
Step 4
To remove the radical on the left side of the equation, raise both sides of the equation to the power of 55.
5√x(x+2)5=(-1)55√x(x+2)5=(−1)5
Step 5
Step 5.1
Use n√ax=axnn√ax=axn to rewrite 5√x(x+2)5√x(x+2) as (x(x+2))15(x(x+2))15.
((x(x+2))15)5=(-1)5((x(x+2))15)5=(−1)5
Step 5.2
Simplify the left side.
Step 5.2.1
Simplify ((x(x+2))15)5((x(x+2))15)5.
Step 5.2.1.1
Multiply the exponents in ((x(x+2))15)5((x(x+2))15)5.
Step 5.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(x(x+2))15⋅5=(-1)5(x(x+2))15⋅5=(−1)5
Step 5.2.1.1.2
Cancel the common factor of 55.
Step 5.2.1.1.2.1
Cancel the common factor.
(x(x+2))15⋅5=(-1)5
Step 5.2.1.1.2.2
Rewrite the expression.
(x(x+2))1=(-1)5
(x(x+2))1=(-1)5
(x(x+2))1=(-1)5
Step 5.2.1.2
Apply the distributive property.
(x⋅x+x⋅2)1=(-1)5
Step 5.2.1.3
Simplify the expression.
Step 5.2.1.3.1
Multiply x by x.
(x2+x⋅2)1=(-1)5
Step 5.2.1.3.2
Move 2 to the left of x.
x2+2x=(-1)5
x2+2x=(-1)5
x2+2x=(-1)5
x2+2x=(-1)5
Step 5.3
Simplify the right side.
Step 5.3.1
Raise -1 to the power of 5.
x2+2x=-1
x2+2x=-1
x2+2x=-1
Step 6
Step 6.1
Add 1 to both sides of the equation.
x2+2x+1=0
Step 6.2
Factor using the perfect square rule.
Step 6.2.1
Rewrite 1 as 12.
x2+2x+12=0
Step 6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
2x=2⋅x⋅1
Step 6.2.3
Rewrite the polynomial.
x2+2⋅x⋅1+12=0
Step 6.2.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=x and b=1.
(x+1)2=0
(x+1)2=0
Step 6.3
Set the x+1 equal to 0.
x+1=0
Step 6.4
Subtract 1 from both sides of the equation.
x=-1
x=-1