Enter a problem...
Algebra Examples
6x2+5x-6=06x2+5x−6=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=6a=6, b=5b=5, and c=-6c=−6 into the quadratic formula and solve for xx.
-5±√52-4⋅(6⋅-6)2⋅6−5±√52−4⋅(6⋅−6)2⋅6
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise 55 to the power of 22.
x=-5±√25-4⋅6⋅-62⋅6x=−5±√25−4⋅6⋅−62⋅6
Step 3.1.2
Multiply -4⋅6⋅-6−4⋅6⋅−6.
Step 3.1.2.1
Multiply -4−4 by 66.
x=-5±√25-24⋅-62⋅6x=−5±√25−24⋅−62⋅6
Step 3.1.2.2
Multiply -24−24 by -6−6.
x=-5±√25+1442⋅6x=−5±√25+1442⋅6
x=-5±√25+1442⋅6x=−5±√25+1442⋅6
Step 3.1.3
Add 2525 and 144144.
x=-5±√1692⋅6x=−5±√1692⋅6
Step 3.1.4
Rewrite 169169 as 132132.
x=-5±√1322⋅6x=−5±√1322⋅6
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=-5±132⋅6x=−5±132⋅6
x=-5±132⋅6x=−5±132⋅6
Step 3.2
Multiply 22 by 66.
x=-5±1312x=−5±1312
x=-5±1312x=−5±1312
Step 4
The final answer is the combination of both solutions.
x=23,-32x=23,−32