Enter a problem...
Algebra Examples
13ln((x+2)3)+12(ln(x)-ln((x2+3x+2)2))13ln((x+2)3)+12(ln(x)−ln((x2+3x+2)2))
Step 1
Step 1.1
Simplify 13ln((x+2)3)13ln((x+2)3) by moving 1313 inside the logarithm.
ln(((x+2)3)13)+12⋅(ln(x)-ln((x2+3x+2)2))ln(((x+2)3)13)+12⋅(ln(x)−ln((x2+3x+2)2))
Step 1.2
Multiply the exponents in ((x+2)3)13((x+2)3)13.
Step 1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ln((x+2)3(13))+12⋅(ln(x)-ln((x2+3x+2)2))ln((x+2)3(13))+12⋅(ln(x)−ln((x2+3x+2)2))
Step 1.2.2
Cancel the common factor of 33.
Step 1.2.2.1
Cancel the common factor.
ln((x+2)3(13))+12⋅(ln(x)-ln((x2+3x+2)2))ln((x+2)3(13))+12⋅(ln(x)−ln((x2+3x+2)2))
Step 1.2.2.2
Rewrite the expression.
ln((x+2)1)+12⋅(ln(x)-ln((x2+3x+2)2))ln((x+2)1)+12⋅(ln(x)−ln((x2+3x+2)2))
ln((x+2)1)+12⋅(ln(x)-ln((x2+3x+2)2))ln((x+2)1)+12⋅(ln(x)−ln((x2+3x+2)2))
ln((x+2)1)+12⋅(ln(x)-ln((x2+3x+2)2))ln((x+2)1)+12⋅(ln(x)−ln((x2+3x+2)2))
Step 1.3
Simplify.
ln(x+2)+12⋅(ln(x)-ln((x2+3x+2)2))ln(x+2)+12⋅(ln(x)−ln((x2+3x+2)2))
Step 1.4
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
ln(x+2)+12⋅ln(x(x2+3x+2)2)ln(x+2)+12⋅ln(x(x2+3x+2)2)
Step 1.5
Simplify the denominator.
Step 1.5.1
Factor x2+3x+2x2+3x+2 using the AC method.
Step 1.5.1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 22 and whose sum is 33.
1,21,2
Step 1.5.1.2
Write the factored form using these integers.
ln(x+2)+12⋅ln(x((x+1)(x+2))2)ln(x+2)+12⋅ln(x((x+1)(x+2))2)
ln(x+2)+12⋅ln(x((x+1)(x+2))2)ln(x+2)+12⋅ln(x((x+1)(x+2))2)
Step 1.5.2
Apply the product rule to (x+1)(x+2)(x+1)(x+2).
ln(x+2)+12⋅ln(x(x+1)2(x+2)2)ln(x+2)+12⋅ln(x(x+1)2(x+2)2)
ln(x+2)+12⋅ln(x(x+1)2(x+2)2)ln(x+2)+12⋅ln(x(x+1)2(x+2)2)
Step 1.6
Simplify 12ln(x(x+1)2(x+2)2)12ln(x(x+1)2(x+2)2) by moving 1212 inside the logarithm.
ln(x+2)+ln((x(x+1)2(x+2)2)12)ln(x+2)+ln⎛⎜⎝(x(x+1)2(x+2)2)12⎞⎟⎠
Step 1.7
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 1.7.1
Apply the product rule to x(x+1)2(x+2)2x(x+1)2(x+2)2.
ln(x+2)+ln(x12((x+1)2(x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12((x+1)2(x+2)2)12⎞⎟
⎟
⎟⎠
Step 1.7.2
Apply the product rule to (x+1)2(x+2)2(x+1)2(x+2)2.
ln(x+2)+ln(x12((x+1)2)12((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12((x+1)2)12((x+2)2)12⎞⎟
⎟
⎟⎠
ln(x+2)+ln(x12((x+1)2)12((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12((x+1)2)12((x+2)2)12⎞⎟
⎟
⎟⎠
Step 1.8
Simplify the denominator.
Step 1.8.1
Multiply the exponents in ((x+1)2)12((x+1)2)12.
Step 1.8.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ln(x+2)+ln(x12(x+1)2(12)((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12(x+1)2(12)((x+2)2)12⎞⎟
⎟
⎟⎠
Step 1.8.1.2
Cancel the common factor of 22.
Step 1.8.1.2.1
Cancel the common factor.
ln(x+2)+ln(x12(x+1)2(12)((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12(x+1)2(12)((x+2)2)12⎞⎟
⎟
⎟⎠
Step 1.8.1.2.2
Rewrite the expression.
ln(x+2)+ln(x12(x+1)1((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12(x+1)1((x+2)2)12⎞⎟
⎟
⎟⎠
ln(x+2)+ln(x12(x+1)1((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12(x+1)1((x+2)2)12⎞⎟
⎟
⎟⎠
ln(x+2)+ln(x12(x+1)1((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12(x+1)1((x+2)2)12⎞⎟
⎟
⎟⎠
Step 1.8.2
Simplify.
ln(x+2)+ln(x12(x+1)((x+2)2)12)ln(x+2)+ln⎛⎜
⎜
⎜⎝x12(x+1)((x+2)2)12⎞⎟
⎟
⎟⎠
Step 1.8.3
Multiply the exponents in ((x+2)2)12((x+2)2)12.
Step 1.8.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ln(x+2)+ln(x12(x+1)(x+2)2(12))ln(x+2)+ln⎛⎜⎝x12(x+1)(x+2)2(12)⎞⎟⎠
Step 1.8.3.2
Cancel the common factor of 22.
Step 1.8.3.2.1
Cancel the common factor.
ln(x+2)+ln(x12(x+1)(x+2)2(12))ln(x+2)+ln⎛⎜⎝x12(x+1)(x+2)2(12)⎞⎟⎠
Step 1.8.3.2.2
Rewrite the expression.
ln(x+2)+ln(x12(x+1)(x+2)1)ln(x+2)+ln(x12(x+1)(x+2)1)
ln(x+2)+ln(x12(x+1)(x+2)1)
ln(x+2)+ln(x12(x+1)(x+2)1)
Step 1.8.4
Simplify.
ln(x+2)+ln(x12(x+1)(x+2))
ln(x+2)+ln(x12(x+1)(x+2))
ln(x+2)+ln(x12(x+1)(x+2))
Step 2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
ln((x+2)x12(x+1)(x+2))
Step 3
Step 3.1
Factor x+2 out of (x+1)(x+2).
ln((x+2)x12(x+2)(x+1))
Step 3.2
Cancel the common factor.
ln((x+2)x12(x+2)(x+1))
Step 3.3
Rewrite the expression.
ln(x12x+1)
ln(x12x+1)