Algebra Examples

Simplify/Condense 1/3 natural log of (x+2)^3+1/2( natural log of x- natural log of (x^2+3x+2)^2)
13ln((x+2)3)+12(ln(x)-ln((x2+3x+2)2))13ln((x+2)3)+12(ln(x)ln((x2+3x+2)2))
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Simplify 13ln((x+2)3)13ln((x+2)3) by moving 1313 inside the logarithm.
ln(((x+2)3)13)+12(ln(x)-ln((x2+3x+2)2))ln(((x+2)3)13)+12(ln(x)ln((x2+3x+2)2))
Step 1.2
Multiply the exponents in ((x+2)3)13((x+2)3)13.
Tap for more steps...
Step 1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ln((x+2)3(13))+12(ln(x)-ln((x2+3x+2)2))ln((x+2)3(13))+12(ln(x)ln((x2+3x+2)2))
Step 1.2.2
Cancel the common factor of 33.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor.
ln((x+2)3(13))+12(ln(x)-ln((x2+3x+2)2))ln((x+2)3(13))+12(ln(x)ln((x2+3x+2)2))
Step 1.2.2.2
Rewrite the expression.
ln((x+2)1)+12(ln(x)-ln((x2+3x+2)2))ln((x+2)1)+12(ln(x)ln((x2+3x+2)2))
ln((x+2)1)+12(ln(x)-ln((x2+3x+2)2))ln((x+2)1)+12(ln(x)ln((x2+3x+2)2))
ln((x+2)1)+12(ln(x)-ln((x2+3x+2)2))ln((x+2)1)+12(ln(x)ln((x2+3x+2)2))
Step 1.3
Simplify.
ln(x+2)+12(ln(x)-ln((x2+3x+2)2))ln(x+2)+12(ln(x)ln((x2+3x+2)2))
Step 1.4
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
ln(x+2)+12ln(x(x2+3x+2)2)ln(x+2)+12ln(x(x2+3x+2)2)
Step 1.5
Simplify the denominator.
Tap for more steps...
Step 1.5.1
Factor x2+3x+2x2+3x+2 using the AC method.
Tap for more steps...
Step 1.5.1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 22 and whose sum is 33.
1,21,2
Step 1.5.1.2
Write the factored form using these integers.
ln(x+2)+12ln(x((x+1)(x+2))2)ln(x+2)+12ln(x((x+1)(x+2))2)
ln(x+2)+12ln(x((x+1)(x+2))2)ln(x+2)+12ln(x((x+1)(x+2))2)
Step 1.5.2
Apply the product rule to (x+1)(x+2)(x+1)(x+2).
ln(x+2)+12ln(x(x+1)2(x+2)2)ln(x+2)+12ln(x(x+1)2(x+2)2)
ln(x+2)+12ln(x(x+1)2(x+2)2)ln(x+2)+12ln(x(x+1)2(x+2)2)
Step 1.6
Simplify 12ln(x(x+1)2(x+2)2)12ln(x(x+1)2(x+2)2) by moving 1212 inside the logarithm.
ln(x+2)+ln((x(x+1)2(x+2)2)12)ln(x+2)+ln(x(x+1)2(x+2)2)12
Step 1.7
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 1.7.1
Apply the product rule to x(x+1)2(x+2)2x(x+1)2(x+2)2.
ln(x+2)+ln(x12((x+1)2(x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12((x+1)2(x+2)2)12⎟ ⎟ ⎟
Step 1.7.2
Apply the product rule to (x+1)2(x+2)2(x+1)2(x+2)2.
ln(x+2)+ln(x12((x+1)2)12((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12((x+1)2)12((x+2)2)12⎟ ⎟ ⎟
ln(x+2)+ln(x12((x+1)2)12((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12((x+1)2)12((x+2)2)12⎟ ⎟ ⎟
Step 1.8
Simplify the denominator.
Tap for more steps...
Step 1.8.1
Multiply the exponents in ((x+1)2)12((x+1)2)12.
Tap for more steps...
Step 1.8.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ln(x+2)+ln(x12(x+1)2(12)((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12(x+1)2(12)((x+2)2)12⎟ ⎟ ⎟
Step 1.8.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 1.8.1.2.1
Cancel the common factor.
ln(x+2)+ln(x12(x+1)2(12)((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12(x+1)2(12)((x+2)2)12⎟ ⎟ ⎟
Step 1.8.1.2.2
Rewrite the expression.
ln(x+2)+ln(x12(x+1)1((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12(x+1)1((x+2)2)12⎟ ⎟ ⎟
ln(x+2)+ln(x12(x+1)1((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12(x+1)1((x+2)2)12⎟ ⎟ ⎟
ln(x+2)+ln(x12(x+1)1((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12(x+1)1((x+2)2)12⎟ ⎟ ⎟
Step 1.8.2
Simplify.
ln(x+2)+ln(x12(x+1)((x+2)2)12)ln(x+2)+ln⎜ ⎜ ⎜x12(x+1)((x+2)2)12⎟ ⎟ ⎟
Step 1.8.3
Multiply the exponents in ((x+2)2)12((x+2)2)12.
Tap for more steps...
Step 1.8.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ln(x+2)+ln(x12(x+1)(x+2)2(12))ln(x+2)+lnx12(x+1)(x+2)2(12)
Step 1.8.3.2
Cancel the common factor of 22.
Tap for more steps...
Step 1.8.3.2.1
Cancel the common factor.
ln(x+2)+ln(x12(x+1)(x+2)2(12))ln(x+2)+lnx12(x+1)(x+2)2(12)
Step 1.8.3.2.2
Rewrite the expression.
ln(x+2)+ln(x12(x+1)(x+2)1)ln(x+2)+ln(x12(x+1)(x+2)1)
ln(x+2)+ln(x12(x+1)(x+2)1)
ln(x+2)+ln(x12(x+1)(x+2)1)
Step 1.8.4
Simplify.
ln(x+2)+ln(x12(x+1)(x+2))
ln(x+2)+ln(x12(x+1)(x+2))
ln(x+2)+ln(x12(x+1)(x+2))
Step 2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
ln((x+2)x12(x+1)(x+2))
Step 3
Cancel the common factor of x+2.
Tap for more steps...
Step 3.1
Factor x+2 out of (x+1)(x+2).
ln((x+2)x12(x+2)(x+1))
Step 3.2
Cancel the common factor.
ln((x+2)x12(x+2)(x+1))
Step 3.3
Rewrite the expression.
ln(x12x+1)
ln(x12x+1)
 [x2  12  π  xdx ]