Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Factor the left side of the equation.
Step 1.2.2.1
Factor out of .
Step 1.2.2.1.1
Factor out of .
Step 1.2.2.1.2
Factor out of .
Step 1.2.2.1.3
Rewrite as .
Step 1.2.2.1.4
Factor out of .
Step 1.2.2.1.5
Factor out of .
Step 1.2.2.2
Factor using the perfect square rule.
Step 1.2.2.2.1
Rewrite as .
Step 1.2.2.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.2.2.2.3
Rewrite the polynomial.
Step 1.2.2.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.2.3
Divide each term in by and simplify.
Step 1.2.3.1
Divide each term in by .
Step 1.2.3.2
Simplify the left side.
Step 1.2.3.2.1
Dividing two negative values results in a positive value.
Step 1.2.3.2.2
Divide by .
Step 1.2.3.3
Simplify the right side.
Step 1.2.3.3.1
Divide by .
Step 1.2.4
Set the equal to .
Step 1.2.5
Subtract from both sides of the equation.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Remove parentheses.
Step 2.2.2
Remove parentheses.
Step 2.2.3
Simplify .
Step 2.2.3.1
Simplify each term.
Step 2.2.3.1.1
Raising to any positive power yields .
Step 2.2.3.1.2
Multiply by .
Step 2.2.3.1.3
Multiply by .
Step 2.2.3.2
Simplify by adding and subtracting.
Step 2.2.3.2.1
Add and .
Step 2.2.3.2.2
Subtract from .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4