Algebra Examples

Find the Vertex y=x^2-6x+3
y=x2-6x+3
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Complete the square for x2-6x+3.
Tap for more steps...
Step 1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=-6
c=3
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=-621
Step 1.1.3.2
Cancel the common factor of -6 and 2.
Tap for more steps...
Step 1.1.3.2.1
Factor 2 out of -6.
d=2-321
Step 1.1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.2.2.1
Factor 2 out of 21.
d=2-32(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2-321
Step 1.1.3.2.2.3
Rewrite the expression.
d=-31
Step 1.1.3.2.2.4
Divide -3 by 1.
d=-3
d=-3
d=-3
d=-3
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=3-(-6)241
Step 1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.4.2.1.1
Raise -6 to the power of 2.
e=3-3641
Step 1.1.4.2.1.2
Multiply 4 by 1.
e=3-364
Step 1.1.4.2.1.3
Divide 36 by 4.
e=3-19
Step 1.1.4.2.1.4
Multiply -1 by 9.
e=3-9
e=3-9
Step 1.1.4.2.2
Subtract 9 from 3.
e=-6
e=-6
e=-6
Step 1.1.5
Substitute the values of a, d, and e into the vertex form (x-3)2-6.
(x-3)2-6
(x-3)2-6
Step 1.2
Set y equal to the new right side.
y=(x-3)2-6
y=(x-3)2-6
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=3
k=-6
Step 3
Find the vertex (h,k).
(3,-6)
Step 4
 [x2  12  π  xdx ]