Algebra Examples

Solve for x y=ax^2+bx+c
y=ax2+bx+c
Step 1
Rewrite the equation as ax2+bx+c=y.
ax2+bx+c=y
Step 2
Subtract y from both sides of the equation.
ax2+bx+c-y=0
Step 3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4
Substitute the values a=a, b=b, and c=c-y into the quadratic formula and solve for x.
-b±b2-4(a(c-y))2a
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Apply the distributive property.
x=-b±b2-4ac-4a(-y)2a
Step 5.2
Rewrite using the commutative property of multiplication.
x=-b±b2-4ac-4(-1ay)2a
Step 5.3
Multiply -4 by -1.
x=-b±b2-4ac+4ay2a
x=-b±b2-4ac+4ay2a
Step 6
The final answer is the combination of both solutions.
x=-b-b2-4ac+4ay2a
x=-b+b2-4ac+4ay2a
 [x2  12  π  xdx ]