Algebra Examples

Solve for x (4/3)^x=(27/64)
(43)x=(2764)
Step 1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln((43)x)=ln(2764)
Step 2
Expand the left side.
Tap for more steps...
Step 2.1
Expand ln((43)x) by moving x outside the logarithm.
xln(43)=ln(2764)
Step 2.2
Rewrite ln(43) as ln(4)-ln(3).
x(ln(4)-ln(3))=ln(2764)
x(ln(4)-ln(3))=ln(2764)
Step 3
Simplify the left side.
Tap for more steps...
Step 3.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
xln(43)=ln(2764)
xln(43)=ln(2764)
Step 4
Divide each term in xln(43)=ln(2764) by ln(43) and simplify.
Tap for more steps...
Step 4.1
Divide each term in xln(43)=ln(2764) by ln(43).
xln(43)ln(43)=ln(2764)ln(43)
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of ln(43).
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
xln(43)ln(43)=ln(2764)ln(43)
Step 4.2.1.2
Divide x by 1.
x=ln(2764)ln(43)
x=ln(2764)ln(43)
x=ln(2764)ln(43)
x=ln(2764)ln(43)
Step 5
The result can be shown in multiple forms.
Exact Form:
x=ln(2764)ln(43)
Decimal Form:
x=-3
(43)x=(2764)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]