Enter a problem...
Algebra Examples
4x2-9x-9=04x2−9x−9=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=4a=4, b=-9b=−9, and c=-9c=−9 into the quadratic formula and solve for xx.
9±√(-9)2-4⋅(4⋅-9)2⋅49±√(−9)2−4⋅(4⋅−9)2⋅4
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise -9−9 to the power of 22.
x=9±√81-4⋅4⋅-92⋅4x=9±√81−4⋅4⋅−92⋅4
Step 3.1.2
Multiply -4⋅4⋅-9−4⋅4⋅−9.
Step 3.1.2.1
Multiply -4−4 by 44.
x=9±√81-16⋅-92⋅4x=9±√81−16⋅−92⋅4
Step 3.1.2.2
Multiply -16−16 by -9−9.
x=9±√81+1442⋅4x=9±√81+1442⋅4
x=9±√81+1442⋅4x=9±√81+1442⋅4
Step 3.1.3
Add 8181 and 144144.
x=9±√2252⋅4x=9±√2252⋅4
Step 3.1.4
Rewrite 225225 as 152152.
x=9±√1522⋅4x=9±√1522⋅4
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=9±152⋅4x=9±152⋅4
x=9±152⋅4x=9±152⋅4
Step 3.2
Multiply 22 by 44.
x=9±158x=9±158
x=9±158x=9±158
Step 4
The final answer is the combination of both solutions.
x=3,-34x=3,−34