Enter a problem...
Algebra Examples
A=P(1+rn)ntA=P(1+rn)nt
Step 1
Rewrite the equation as P(1+rn)nt=AP(1+rn)nt=A.
P(1+rn)nt=AP(1+rn)nt=A
Step 2
Step 2.1
Divide each term in P(1+rn)nt=AP(1+rn)nt=A by PP.
P(1+rn)ntP=APP(1+rn)ntP=AP
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of PP.
Step 2.2.1.1
Cancel the common factor.
P(1+rn)ntP=AP
Step 2.2.1.2
Divide (1+rn)nt by 1.
(1+rn)nt=AP
(1+rn)nt=AP
(1+rn)nt=AP
(1+rn)nt=AP
Step 3
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln((1+rn)nt)=ln(AP)
Step 4
Expand ln((1+rn)nt) by moving nt outside the logarithm.
ntln(1+rn)=ln(AP)
Step 5
Step 5.1
Divide each term in ntln(1+rn)=ln(AP) by nln(1+rn).
ntln(1+rn)nln(1+rn)=ln(AP)nln(1+rn)
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of n.
Step 5.2.1.1
Cancel the common factor.
ntln(1+rn)nln(1+rn)=ln(AP)nln(1+rn)
Step 5.2.1.2
Rewrite the expression.
tln(1+rn)ln(1+rn)=ln(AP)nln(1+rn)
tln(1+rn)ln(1+rn)=ln(AP)nln(1+rn)
Step 5.2.2
Cancel the common factor of ln(1+rn).
Step 5.2.2.1
Cancel the common factor.
tln(1+rn)ln(1+rn)=ln(AP)nln(1+rn)
Step 5.2.2.2
Divide t by 1.
t=ln(AP)nln(1+rn)
t=ln(AP)nln(1+rn)
t=ln(AP)nln(1+rn)
t=ln(AP)nln(1+rn)